The Primary Study on PLA/Tencel Nonwoevn Fabric

Article Preview

Abstract:

Polylactic acid (PLA) is often applicable in biomedical because in environment it degrades into carbon dioxide and water. This study aims to prepare sandwich-structure PLA/ Tencel composite nonwoven, following by its property test for evaluating effect on wound dressing. In this study, PLA fibers, blended with Tencel fibers, were made into nonwoven fabrics based on nonwoven processing technology. After that, their tensile strength, tearing strength and softness were tested for evaluating nonwoven fabric properties. The result displays that, PLA nonwoven fabrics show higher tensile strength and tearing strength than Tencel nonwoven fabrics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1333-1336

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] EFS. The History of Textiles: Textile fibre usage and production, Education For Sustainability (EFS), Textile online; 2006. http://www.e4s.org.uk/textilesonline/content/6library/fr library.htm [accessed on 4.12.2006].

Google Scholar

[2] J.H. Lin, C.T. Lu, W.C. Chen, J.J. Hu, C.W. Lou, Preparation and Properties Evaluation of Tencel/ PET Low Melting Point Fiber Dressing Fabric coated by UV Cross-linked Chitosan, Advanced Textile Materials. 332-334(2011) 1848.-1851.

DOI: 10.4028/www.scientific.net/amr.332-334.1848

Google Scholar

[3] S. Li, W. Ernst, K. P. Martin, Environmental impact assessment of man-made cellulose fibres, Resour Conserv Recy. 55 (2010) 260-274.

Google Scholar

[4] L. Pearson, S. Wakins, S. Frankham, Textile Finishing Melliand Int. 3 (1997) 149–156.

Google Scholar

[5] D. Ruta, Textilia Eur. 6 (1994) 5–11.

Google Scholar

[6] D. Ruta, Textilia Eur. 6 (1994) 51–54.

Google Scholar

[7] B. Ething, S. Gogolewski, A.J. Penning, Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres, Polymer. 23(1982) 1587–1593.

DOI: 10.1016/0032-3861(82)90176-8

Google Scholar

[8] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, S. H. Benjamin C. Benjamin, H. Michael, Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications, Biomaterials. 2003;24(27):4977–85.

DOI: 10.1016/s0142-9612(03)00407-1

Google Scholar

[9] J.V. Seppa¨la¨, A.O. Helminen, H. Korhonen, Degradable polyesters through chain linking for packaging and biomedical applications, MacromolBiosci. 4 (2004) 208–17.

DOI: 10.1002/mabi.200300105

Google Scholar

[10] Enomoto K, Ajioka M, Yamaguchi. US patent 5 310 865; 1995. KashimaT, Kameoka T, Ajioka M, Yamaguchi A. US patent 5 428 126; 1995.

Google Scholar

[11] Ichikawa F, Kobayashi M, Ohta M, Yoshida Y, Obuchi S, Itoh H. USpatent 5 440 008; 1995. Ohta M, Yoshida Y, Obuchi S. US patent 5 440143; 1995.

Google Scholar

[12] Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL. USpatent 5 142 023; 1992. US patent 5 247 058; 1992. US patent 5 247 059;1993. US patent 5 258 488; 1993. US patent 5 274 073; 1993. US patent 5

DOI: 10.1016/0010-4361(93)90264-9

Google Scholar

[13] 357 035; 1994. US patent 5 484 881; 1996.

Google Scholar

[14] S. Jacobsen, H.G. Fritz, P. Dege´e, P. Dubois, R. Je´roˆme, Single-step reactive extrusion of PLLA in a corotating twin-screw extruder promoted by 2-ethylhexanoic acid tin(II) salt and triphenylphosphine, Polymer. 2000;41(9):3395–403.

DOI: 10.1016/s0032-3861(99)00507-8

Google Scholar