Monitoring Volatile Organic Compound by Visual Recognition Technology of Application

Article Preview

Abstract:

To recognize volatile organic compound for colorimetric sensor array which constitute with chemical dyes. The rapid and low cost system can identify dilute compound. Every different compound is presented specified color on the colorimetric sensor array. In this research, we use CCD (charge couple device) to clearly classify the change of color on base, and make sure what the compound would be by Neural Network model. Based on the experimental result, we totally test for 33 group data, and precisely classify all type of volatile organic compound. It’s successfully to achieve the target in this research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1016-1019

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Persuad, K.; Dodd, G. H., Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature, Vol. 299, p.352(1982).

DOI: 10.1038/299352a0

Google Scholar

[2] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-Reactive Chemical Sensor Arrays, Chem. Rev., Vol. 100, pp.2595-2626(2000).

DOI: 10.1021/cr980102w

Google Scholar

[3] Michael C. Janzen, Kenneth S. Suslick, Colorimetric sensor arrays for volatile organic compounds, Anal. Chem. Vol. 78, pp.3591-3600 (2006).

DOI: 10.1021/ac052111s

Google Scholar

[4] Neal A. Rakow, Kenneth S. Suslick, A colorimetric sensor array for odor visualization, Nature Vol. 406, pp.710-713(2000).

DOI: 10.1038/35021028

Google Scholar

[5] Kenneth S. Suslick, Neal A . Rakow and Avijit Sen, Colorimetric sensor arrays for molecular recognition, Tetrahedron , Vol. 60, pp.11133-11138(2004).

DOI: 10.1016/j.tet.2004.09.007

Google Scholar

[6] Jin Ho Bang, Kenneth S. Suslick, Chemically Responsive Nanoporous Pigments: Colorimetric sensor arrays and the identification of aliphatic amines, Langmuir, Vol. 24, p.13168–13172(2008).

DOI: 10.1021/la802029m

Google Scholar

[7] A. Safavi, S. Maesum, CCD camera full range pH sensor array, Talanta , Vol. 71 pp.498-501(2007).

DOI: 10.1016/j.talanta.2006.04.030

Google Scholar

[8] Patrick Kim, William B. McNamara, Towards the development of a portable device for the monitoring of gaseous toxic industrial chemicals based on a chemical sensor array, Sensors and Actuator B, Vol. 134, pp.307-312(2008).

DOI: 10.1016/j.snb.2008.05.007

Google Scholar

[9] Yoshika Sekine, Risa Katori, Indoor Air Quality Monitoring via IT Network,. ICROS-SICE International Joint Conference, pp.4041-4046 (2009).

Google Scholar

[10] S. Capel- Cuevas, L.F. Capitan-Vallvey, Full-range optical pH sensor array based on neural networks, Microchemical Journal, Vol. 97, pp.225-233(2011).

DOI: 10.1016/j.microc.2010.09.008

Google Scholar

[11] Dan Mikami, Koji Suzuki, Quantification of Ternary Mixtures of Heavy Metal Cations from Metallochromic absorbance spectra using neural network inversion, Anal. Chem., Vol. 76, pp.5726-5733(2004).

DOI: 10.1021/ac040024e

Google Scholar

[12] Xial-gang Luo, Ping Liu, A novel chemical detector using colorimetric sensor array and pattern recognition methods for the concentration analysis of NH3, Review of Scientific Instruments, Vol. 81, p.105113(2010).

DOI: 10.1063/1.3501965

Google Scholar

[13] Leilei Pan, Simon X. Yang, An Wireless electronic nose network for odors livestock farms, IEEE conference, pp.211-216(2007).

Google Scholar

[14] Tommy S. Alstrom , Jan Larsen, Data Representation and feature selection for colorimetric sensor arrays used as explosives detectors, IEEE International Workshop on Machine Learning for Signal Processing, pp.1-6 (2011).

DOI: 10.1109/mlsp.2011.6064615

Google Scholar

[15] Liang Feng, S. Suslick, a colorimetric sensor array for identification of toxic gases below permissible exposure limits, Chem. Commun., Vol. 46, pp.2037-2039(2010).

DOI: 10.1039/b926848k

Google Scholar

[16] Simon Haykin, Neural Networks, Prentice Hall(1999).

Google Scholar