Study on the Properties of MWNTs/Polyethylene Nanocomposites by In Situ Polymerization

Article Preview

Abstract:

Multi–walled carbon nanotubes (MWNTs)/polyethylene (PE) nanocomposites were prepared via in situ polymerization with MWNTs supported Cp2ZrCl2 catalyst. XPS and FESEM results imply that Cp2ZrCl2 catalyst has been immobilized in the surface of the MWNTs supports by a MAO bridge. The efficient dispersion of MWNTs in PE matrix and the strong compressive forces associated with PE on the MWNTs were demonstrated by TEM, FESEM and Raman spectra. With introducing 0.2 wt.-% MWNTs, both the tensile strength and elongation of MWNTs/PE nanocomposite increased by factors of 1.6 (from 29 MPa to 45 MPa) and 1.5 (from 909% to 1360%) comparing with the pure PE, respectively. Morphology observation of fractured surface, in accordance with the Raman results, revealed that the PE firmly adheres to the nanotubes, which is responsible for the significant improvement of the mechanical properties of nanocomposites. Thermal stabilities of the nanocomposites were significantly improved. In addition, the MWNTs/PE nanocomposites show very high UV shielding properties, which could increase photooxidative stability of the PE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-292

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212.

Google Scholar

[2] P.J.F. Harris. Int. Mater. Rev. 2004, 49, 31.

Google Scholar

[3] A. Star, J. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. Wong, X. Yang, S. Chung, S. Choi, J.R. Heath, Angew. Chem. Int. Ed. 2001, 40, 1721.

DOI: 10.1002/1521-3773(20010504)40:9<1721::aid-anie17210>3.0.co;2-f

Google Scholar

[4] S. Ruan, P. Gao, X. Yang, T. Yu, Polymer 2003, 44, 5643.

Google Scholar

[5] X. Tong, C. Liu, H. Cheng, H. Zhao, F. Yang, X. Zhang, J. Appl. Polym. Sci. 2004, 92, 3697.

Google Scholar

[6] D. Bondual, M. Mainil, M. Alexandre, F. Monteverde, P. Dubois, Chem. Commun 2005, 781–782.

Google Scholar

[7] K. Wiemann, W. Kaminsky, F.H. Gojny, K. Schulte, Macromol. Chem. Phys. 2005, 206, 1472.

Google Scholar

[8] X.C. Dong, L. Wang, T. X. Sun, J. F. Zhou, Q. Yang, J. Mol. Cat. A: Chem. 2006, 255, 10.

Google Scholar

[9] W. Kaminsky, K. Wiemann, Composite Interfaces 2006, 13, 365.

Google Scholar

[10] W. Kaminsky, A. Funck, K. Wiemann, Macromol. Symp. 2006, 239, 1.

Google Scholar

[11] A. Funck, W. Kaminsky, Compos. Sci. Technol. 2007, 67, 906.

Google Scholar

[12] S.Y. Li, H. Chen, W.G. Bi, J.J. Zhou, Y.H. Wang, J.Z. Li, W.X. Cheng, M.Y. Li, L. Li, T. Tang, J. Polym. Sci. Part. A: Polym. Chem. 2007, 45, 5459.

DOI: 10.1002/pola.22290

Google Scholar

[13] K. Li, S. Saigal, Mater. Sci. Eng. A 2007, 457, 44–57.

Google Scholar

[14] O. Breuer, U. Sundararaj, Polym. Comp. 2004, 25, 630.

Google Scholar

[15] C.B. Liu, T. Tang, B.T. Huang, J. Polym. Sci. Part. A: Polym. Chem. 2002, 40, 1892.

Google Scholar

[16] L.M. Wei, T. Tang, B.T. Huang, J. Polym. Sci. Part. A: Polym. Chem. 2003, 42, 941.

Google Scholar

[17] Y.P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res. 2002, 35, 1096.

Google Scholar