Macrocell Label Switching Mechanism for MPLS-WiMAX Networks

Article Preview

Abstract:

This paper proposes a fast macrocell label switching mechanism (MLSM) in the MPLS-WiMAX networks. The mobil station (MS) communicates with each other within macrocell, e.g., MSA in the cellA communicates with MSB in the other cell, and can be switched via the media access control (MAC) layer without involving the network layer. The average access delay of request from MSs is studied and analyzed in this paper. Finally, simulation results show that the purposed MLSM operates effectively and efficiently in terms of network throughput, average delay, and resource utilization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1096-1102

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Acharya, S. Ganu, and A. Misra, DCMA: A Label Switching MAC for Efficient Packet Forwarding in Multihop Wireless Networks, IEEE J. Select. Areas Commun., vol. 24, no. 11, pp.1995-2004, Nov. (2006).

DOI: 10.1109/jsac.2006.881636

Google Scholar

[2] L. Andersson and S. Bryant, The IETF Multiprotocol Label Switching Standard: The MPLS Transport Profile Case, IEEE Internet Computing, vol. 12, no. 4, pp.69-73, July-Aug. (2008).

DOI: 10.1109/mic.2008.89

Google Scholar

[3] P.J. Burke, The Output of a Queueing System, Operations Research, vol. 4, pp.699-714, (1956).

Google Scholar

[4] J. Chen, A.C. Pang, S.T. Sheu, and H.W. Tseng, High Performance Wireless Switch Protocol for IEEE 802. 11 Wireless Networks, Mobile Netw. Appl., vol. 10, no. 5, pp.741-751, Oct. (2005).

DOI: 10.1007/s11036-005-3367-6

Google Scholar

[5] D. Gross, J.F. Shortle, J.M. Thompson, and C.M. Harris, Fundamentals of Queueing Theory, 4th ed., Wiley, Hoboken, NJ, (2008).

Google Scholar

[6] IEEE 802. 16 Working Group, IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE Std. 802. 16e-2005, Feb. (2006).

DOI: 10.1109/ieeestd.2002.93575

Google Scholar

[7] K.M. Khalil, K.Q. Luc, and D.V. Wilson, The LAN Traffic Analysis and Workload Characterization, in Proc. ACM Local Computer Networks 1990, vol. 202, article 5, pp.112-122, Sept. (1990).

DOI: 10.1109/lcn.1990.128647

Google Scholar

[8] I. Koffman and V. Roman, Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802. 16, IEEE Commun. Mag., vol. 40, no. 4, pp.96-103, Apr. (2002).

DOI: 10.1109/35.995857

Google Scholar

[9] R. Langar, S. Tohme, and N. Bouabdallah, Mobility Management Support and Performance Analysis for Wireless MPLS Networks, ACM Wiley Int. J. Netw. Manag., vol. 16, no. 4, pp.279-294, July (2006).

DOI: 10.1002/nem.599

Google Scholar

[10] F. Le Faucheur, IETF Multiprotocol Label Switching (MPLS) Architecture, in Proc. ATM, ICATM-98, pp.6-15, June (1998).

DOI: 10.1109/icatm.1998.688153

Google Scholar

[11] C. Metz, Layer 2 over IP/MPLS, IEEE Internet Computing, vol. 5, no. 4, pp.77-82, July-Aug. (2001).

DOI: 10.1109/4236.939453

Google Scholar

[12] http: /www. scalable-networks. com/support/manuals. php QualNet 3. 9. 5.

Google Scholar

[13] K. Wongthavarawat and A. Ganz, Packet Scheduling for QoS Support in IEEE 802. 16 Broadband Wireless Access Systems, Int. J. Commun. Syst., vol. 16, no. 1, pp.81-96, Feb. (2003).

DOI: 10.1002/dac.581

Google Scholar