Research on Monthly Electric Energy Demand Forecasting under the Influence of Two Calendars

Article Preview

Abstract:

Monthly electric energy demand forecasting plays an important role for the running of power system. China has two tow calendars and they works at the same time. Holidays designed by the lunar calendar affect the regularity of monthly electric load recorded only by the Gregorian one. The normal fuzzy transform is advanced here to quantitatively describe the impact of the Spring Festival and further divided the influence into Jan. and Feb. After excluding the influence, the amended historical data are adopted to training RBF neural network. Experiment results show that because the regularity of raw data is improved, the generalization ability and forecasting precise of RBF neural network are improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

963-968

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ming Meng, Wei Shang: International Seminar on Business and Information Management Vol. 1 (2008), pp.125-127.

Google Scholar

[2] H.M. Al-Hamadi, S.A. Soliman: Electric Power Systems Research Vol. 74 (2005), pp.353-361.

Google Scholar

[3] N. X. Jia, R. Yokoyama, Y. C. Zhou, Z. Y. Gao: International Journal of Electrical Power & Energy Systems Vol. 23 (2001), pp.549-556.

Google Scholar

[4] Coşkun Hamzaçebi: Energy Policy Vol. 35 (2007), p.2009-(2016).

Google Scholar

[5] David J. Sailor: Energy Vol. 26 (2001), pp.645-657.

Google Scholar

[6] Ming Meng, Wei Shang: 2009 First International Workshop on Database Technology and Applications (2009), pp.677-680.

Google Scholar

[7] Peretto L., Sasdelli R., Tinarelli, R.: IEEE Transactions on Instrumentation and Measurement Vol. 52 (2003), pp.1143-1147.

DOI: 10.1109/tim.2003.815988

Google Scholar

[8] Kandil M.S., El-Debeiky S.M., Hasanien, N.E.: IEEE Transactions on Power Systems Vol. 17 (2002), pp.491-496.

DOI: 10.1109/tpwrs.2002.1007923

Google Scholar

[9] M.R. AlRashidi, K.M. EL-Naggar: Applied Energy Vol. 87 (2010), pp.320-326, in press.

Google Scholar

[10] E. González-Romera, M.A. Jaramillo-Morán, D. Carmona-Fernández: Energy Conversion and Management Vol. 49 (2008), pp.3135-3142.

DOI: 10.1016/j.enconman.2008.06.004

Google Scholar

[11] K. Padmakumari, K. P. Mohandas, S. Thiruvengadam: International Journal of Electrical Power & Energy Systems Vol. 21 (1999), pp.315-322.

DOI: 10.1016/s0142-0615(98)00056-8

Google Scholar

[12] Peng T.M., Hubele N.F., Karady G.G.: IEEE Transactions on Power Systems Vol. 7 (1992), pp.250-257.

Google Scholar

[13] Parkpoom S. (J. ), Harrison G. P.: IEEE Transactions on Power Systems Vol. 23 (2008), pp.1441-1448.

Google Scholar

[14] Information on http: /www. dtreg. com/rbf. htm.

Google Scholar

[15] Guiqing Zhang: Introduction to artificial neural networks, China WaterPower Press, Beijing, China (2004).

Google Scholar