The Effects of Perfluorooctane Sulfonate (PFOS) on Physiological Status and Proliferation Capacity of Scenedesmus obliqnus

Article Preview

Abstract:

To evaluate the toxic effects of environmental contaminant PFOS on green algae, Scenedesmus obliqnus was cultured in media containing serially diluted PFOS for evaluation of proliferation capacity and some physiological indexes. Within 96h, PFOS doses ≥50 mg/L all inhibited the proliferation speed of Scenedesmus obliqnus(p<0.05). The 96h EC50 value of PFOS was determined to be 126 mg/L. In a chronic experiment with 8 days of PFOS treatment, chlorophyll a content, which was inhibited by even the lowest dose, showed to be the most sensitive index to PFOS contamination. PFOS doses ≥100mg/L all resulted in decreasing of antioxidant enzyme activity and increasing of MDA content in Scenedesmus obliqnus(P<0.05).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1131-1135

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Giesy and K. Kannan: Perfluorochemical surfactants in the environment. Environ Sci Technol, Vol. 36(2002), p.146A-152A

DOI: 10.1021/es022253t

Google Scholar

[2] U.S. Environmental Protection Agency: Perfluorooctyl Sulfonates; Proposed Significant New Use Rule. Federal Register, Vol. 65(2000), pp.62319-62333.

Google Scholar

[3] J.P. Giesy and K. Kannan: Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol, Vol. 35(2001), pp.1339-1342

DOI: 10.1021/es001834k

Google Scholar

[4] E. Sinclair and K. Kannan: Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants, Environmental Science & Technology, Vol. 40(2006), pp.1408-1414

DOI: 10.1021/es051798v

Google Scholar

[5] A. Pistocchi and R.A. Loos: Map of European emissions and concentrations of PFOS and PFOA, Environmental Science & Technology, Vol. 43(2009), pp.9237-9244

DOI: 10.1021/es901246d

Google Scholar

[6] European Commission: Proposal for a Directive of the European Parliament and of the Council relating to restrictions on the marketing and use of perfluorooctane sulfonates (amendment of Council Directive 76/769/EEC). (2006)

Google Scholar

[7] K.J. Hansen, L.A. Clemen, M.E. Ellefson and H.O. Johnson: Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices, Environ. Sci Technol, Vol. 35(2001), p.766–770

DOI: 10.1021/es001489z

Google Scholar

[8] C. Lau, K. Anitole, C. Hodes, et al.: Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci., Vol. 99-2(2007), pp.366-394

DOI: 10.1093/toxsci/kfm128

Google Scholar

[9] W. Liu, Y.B. Zhang, X. Quan, Y.H. Jin, and S. Chen: Effect of perfluorooctane sulfonate on toxicity and cell uptake of other compounds with different hydrophobicity in green alga, Chemosphere, Vol. 75(2009), pp.405-409

DOI: 10.1016/j.chemosphere.2008.11.084

Google Scholar

[10] T.M. Boudreau, P.K. Sibley, S.A. Mabury, et al.: Laboratory Evaluation of the Toxicity of Perfluorooctane Sulfonate (PFOS) on Selenastrum capricornutum , Chlorella vulgaris , Lemna gibba , Daphnia magna , and Daphnia pulicaria, Archives of Environmental Contamination and Toxicology. Vol. 44(2003), pp.307-313

DOI: 10.1007/s00244-002-2102-6

Google Scholar

[11] L.J. Li: Studies on Effects of Vanadate and Vanadium Complex on Growth and Physiology of Two Marine Microalgae, publications/Ocean University of China, Qingdao(2007), p.11

Google Scholar

[12] Y.F. Shen and Z.S. Zhang: Modern biomonitoring techniques using fresh water microbiota. Publications/China Archiurf & Building Press, Beijing(1990), pp.275-286

Google Scholar

[13] Y.L. Jiang, S.Z. Lu and D.L. Shen: Cellular biological experiment. publications/Fudan University Press, Shanghai(1996), pp.16-17

Google Scholar

[14] X. Zhang, H.L. Liu, and S.F. Wang: Determination of chlorophyll by spectrophotography, Shandong Water Conservancy, Vol. 3(2002), pp.39-40

Google Scholar

[15] K. Chen, T. Zhu, Y.T Zhang, et al.: effect of nitric oxide on N metabolism and Thylakoid membrane in Chlorella pyrenodosa response to UV-B radiation, Ecology and Environmental Sciences, Vol. 18(2009), pp.865-868

Google Scholar

[16] T.D. Bewley: Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol. Vol. 30(1979), pp.195-238

DOI: 10.1146/annurev.pp.30.060179.001211

Google Scholar

[17] O.P. Srivastava and P.B. Van Huystee: Evidence for close association of POD polyphenol oxidase and IAA oxidase isoenzyme of peanut suspension culture medium. Can J Bot, Vol. 51(1973), pp.2207-2215

DOI: 10.1139/b73-283

Google Scholar

[18] X. Nie, J. Gu, J. Lu, et al.: Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus, Ecotoxicology. Vol. 18-6(2009), pp.677-684

DOI: 10.1007/s10646-009-0334-1

Google Scholar

[19] M. Houde, T.A.D. Bujas, J. Small, et al.: Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin (Tursiops truncates) food web, Environ. Sci. Technol., Vol. 40(2006), pp.4138-4144

DOI: 10.1021/es060233b

Google Scholar

[20] K. Kannan, S. Corsolini, J. Falandysz, et al.: Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol, Vol. 38(2004), pp.4489-4495

DOI: 10.1021/es0493446

Google Scholar

[21] A. Schuetze, T. Heberer, S. Effkemann and S. Juergensen: Occurrence and assessment of perfluorinated chemicals in wild fish from Northern Germany, Chemosphere, Vol. 78(2010), pp.647-652

DOI: 10.1016/j.chemosphere.2009.12.015

Google Scholar

[22] X.L. Xu, D.Y. Zhang and X.Y. Shen: A review of environmental PFOS contamination, Environmental Science and Technology of China, Vol. 33(2010), pp.440-444.

Google Scholar