H2SO4 and Maleic Anhydride Electrochemistry Modifications on Carbon Fiber and Effects on Immobilization of Microorganism in Waste Water

Article Preview

Abstract:

PAN-based carbon fiber (CF) was modified by electrochemistry using H2SO4 and maleic anhydride (MA) in current rearch. The CF surface morphology and natures were characterized by specific facilities, such as laser confocal microsopy (LCM), Fourier transform infrared spectroscopy (FTIR) and the degree of moisture. On the other hand, the biocompatibility nature was indicated by immobilization results of microorganisms on CF. The outcomes show that the surface hydrophilicity, oxygen-based function-groups and surface roughness of CF would contribute greatly to improve the immobilization ability of microorganisms on CF surface. And H2SO4 anodic oxidation on CF has more effect on microorganism immobilization than MA electropolymerization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2013-2017

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Shen, H. Wang, R. Guan, Z. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 331 (2008) 263-267.

Google Scholar

[2] M. Inagaki, Carbon Fibers, in: New Carbons - Control of Structure and Functions, Elsevier Science, Oxford, 2000, pp.82-123.

DOI: 10.1016/b978-008043713-2/50004-2

Google Scholar

[3] M. Khorasani, S. MoemenBellah, H. Mirzadeh, B. Sadatnia, Colloids and Surfaces B: Biointerfaces, 51 (2006) 112-119.

DOI: 10.1016/j.colsurfb.2006.06.002

Google Scholar

[4] Y. Liu, Q. Zhao, Biophysical chemistry, 117 (2005) 39-45.

Google Scholar

[5] S. Kang, H. Choi, Colloids and Surfaces B: Biointerfaces, 46 (2005) 70-77.

Google Scholar

[6] G. Bruinsma, H. Van der Mei, H. Busscher, Biomaterials, 22 (2001) 3217-3224.

DOI: 10.1016/s0142-9612(01)00159-4

Google Scholar

[7] J. Lee, S. Lee, G. Khang, H. Lee, Journal of colloid and interface science, 230 (2000) 84-90.

Google Scholar

[8] M. Khorasani, H. Mirzadeh, S. Irani, Radiation Physics and Chemistry, 77 (2008) 280-287.

Google Scholar

[9] S. Hsu, W. Chen, Biomaterials, 21 (2000) 359-367.

Google Scholar

[10] Y.L. Bao, G.Z. Dai, X.M. Huang, J. Han, J.W. Zhao, Q.Q. Ni, Advanced Materials Research, 284 (2011) 1756-1759.

Google Scholar

[11] Y.L. Bao, G.Z. Dai, C. Jiang, Advanced Materials Research, 356 (2012) 106-109.

Google Scholar

[12] Y.L. Bao, G.Z. Dai, X.M. Huang, J.W. Zhao, J. Han, Advanced Materials Research, 311 (2011) 1728-1734.

Google Scholar

[13] A. Bismarck, M.E. Kumru, J. Springer, J. Simitzis, Applied Surface Science, 143 (1999) 45-55.

Google Scholar

[14] A. Fukunaga, S. Ueda, Composites Science and Technology, 60 (2000) 249-254.

Google Scholar

[15] S. Hu, F. Yang, C. Sun, J. Zhang, T. Wang, Journal of Environmental Sciences, 20 (2008) 142-148.

Google Scholar

[16] G. Huang, J. Shi, T. Langrish, Chemical Engineering Journal, 152 (2009) 434-439.

Google Scholar

[17] E. Pamula, P.G. Rouxhet, Carbon, 41 (2003) 1905-1915.

Google Scholar