A New Identification Method for Dual-Rate Wiener Systems

Article Preview

Abstract:

A new parameter estimation method is introduced for dual-rate Wiener systems. The method uses the finite input response model and a stochastic gradient algorithm to estimate the parameters of the finite input response model. The origin parameters can be computed by the estimated parameters. Simulation studies of dual-rate Wiener systems identification are included.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2109-2112

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.Q. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal Processing 91 (5) (2011) 1182-1189.

DOI: 10.1016/j.sigpro.2010.11.004

Google Scholar

[2] X.L. Hu, H.F. Chen, Strong consistence of recursive identification for Wiener systems, Automatic 41 (11) (2005) 1905-1916.

DOI: 10.1016/j.automatica.2005.06.006

Google Scholar

[3] J. Chen, Y. Zhang, F. Ding, Least squares based iterative parameter estimation for output nonlinear systems with piece-wise nonlinearities, in: 2011 Chinese Control Conference, July 22-24, 2011 Yantai China 1438-1441.

Google Scholar

[4] D.Q. Wang, Y.Y. Chu, F. Ding, Identification methods for Wiener nonlinear systems based on the least squares and gradient iterations, 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, December 16-18, 2009, Shanghai China 3632-3636.

DOI: 10.1109/cdc.2009.5399834

Google Scholar

[5] B. Yu, Y. Shi, H. Huang, filtering for multirate systems using lifted models, Circuit Systems and Signal Processing 27 (5) (2008) 699-711.

DOI: 10.1007/s00034-008-9058-3

Google Scholar

[6] M. Sahebsara, T. Chen, S.L. Shah, Frequency-domain parameter estimation of general multi-rate systems, Computers & Chemical Engineering 30 (5) (2006) 838-849.

DOI: 10.1016/j.compchemeng.2005.12.011

Google Scholar

[7] F. Ding, T. Chen, Parameter estimation for dual-rate systems with finite measurement data, Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms 11 (1-2) (2004) 101-121.

Google Scholar

[8] Y.W. Liao, D.Q. Wang, X.M. Chen, F. Ding, On the residual based stochastic gradient algorithm for dual-rate sampled-data systems using the polynomial transform technique, 2009 American Control Conference, June 10-12, 2009, St. Louis, USA, pp.3184-3187.

DOI: 10.1109/acc.2009.5159808

Google Scholar

[9] F. Ding, Y. Shi, T. Chen, Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems & Control Letters 56 (5) (2007) 373-380.

DOI: 10.1016/j.sysconle.2006.10.026

Google Scholar

[10] J. Ding, F. Ding, S. Zhang, Parameter identification of multi-input, single-output systems based on FIR models and least squares principle, Applied Mathematics and Computation 197 (1) (2008) 297-305.

DOI: 10.1016/j.amc.2007.07.076

Google Scholar

[11] F. Ding, P.X. Liu, H.Z. Yang, Parameter identification and intersample output estimation for dual-rate systems, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 38 (4) (2008) 966-975.

DOI: 10.1109/tsmca.2008.923030

Google Scholar

[12] J. Ding, Y. Shi, H.G. Wang, F. Ding, A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems, Digital Signal Processing 20 (4) (2010) 1238-1249.

DOI: 10.1016/j.dsp.2009.10.023

Google Scholar