[1]
Davis,L.,Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
Google Scholar
[2]
K. Bouleimen, H. Lecocq, A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version, European Journal of Operational Research,vol. 149, 2003, p.268–281.
DOI: 10.1016/s0377-2217(02)00761-0
Google Scholar
[3]
T. Baar, P. Brucker, S. Knust, Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem, in: S Voss, S Martello, I Osman, C Roucairol (Eds.), Meta-heurisitics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, Dordrecht, 1998, p.1–8.
DOI: 10.1007/978-1-4615-5775-3_1
Google Scholar
[4]
Hartmann, S., A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics ,vol 45,1998, pp.279-302.
DOI: 10.1002/(sici)1520-6750(199810)45:7<733::aid-nav5>3.0.co;2-c
Google Scholar
[5]
Hartmann, S., A self-adapting genetic algorithm for project scheduling under resource constraints, Naval Research Logistics,vol 49, 2002, pp.433-448.
DOI: 10.1002/nav.10029
Google Scholar
[6]
W.T. Chan, D.K.H. Chua, G. Kannan, Construction resource scheduling with genetic algorithms, Journal of Construction Engineering and Management, ASCE,vol 122, 1996, pp.125-132.
DOI: 10.1061/(asce)0733-9364(1996)122:2(125)
Google Scholar
[7]
J. Alcaraz and C. Maroto, A Robust Genetic Algorithm for Resource Allocation in Project Scheduling, Annals of Operations Research, vol. 102, 2001, p.83–109.
Google Scholar
[8]
Dorigo, M., V. Maniezzo and A. Colorni, The ant system: Optimization by a colony of cooperating agents, IEEE Trans. on Systems, Man, and Cybernetics -Part B, vol.149, no.5, 1996, pp.379-386.
DOI: 10.1109/3477.484436
Google Scholar
[9]
Q. Duana, T. Warren Liao, Improved ant colony optimization algorithms for determining project critical paths, Automation in Construction ,Volume 19, Issue 6, 2010, pp.676-693.
DOI: 10.1016/j.autcon.2010.02.012
Google Scholar
[10]
Shih-Tang Lo., Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system, Expert Systems with Applications Volume 34, Issue 3, 2008, pp.2071-2081.
DOI: 10.1016/j.eswa.2007.02.022
Google Scholar
[11]
Hong Zhang., Particle swarm optimization-based schemes for resource-constrained project scheduling, Automation in Construction 14, 2005, p.393– 404.
DOI: 10.1016/j.autcon.2004.08.006
Google Scholar
[12]
J. Kennedy, R.C. Eberhart, Particle swarm optimization, Proc. IEEE Conf. Neural Netw., vol. IV, IEEE, Piscataway, NJ, 1995, p.1942– 1948.
Google Scholar
[13]
B. Jarboui., A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, vol. 195, 2008, pp.299-308.
DOI: 10.1016/j.amc.2007.04.096
Google Scholar
[14]
Ruey-Maw Chen, Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert Systems with Applications 37, 2010, p.1899–1910.
DOI: 10.1016/j.eswa.2009.07.024
Google Scholar
[15]
Koorush Ziarati., On the performance of bee algorithms for resource-constrained project scheduling problem, Applied Soft Computing, vol. 11, 2011, p.3720–3733.
DOI: 10.1016/j.asoc.2011.02.002
Google Scholar
[16]
Shu-Chuan Chu., Computational intelligence based on the behavior of cats, International Journal of Innovative Computing, Information and Control, vol. 3, 2007.
Google Scholar
[17]
Rainer Kolisch, PSPLIB – A project scheduling problem library, European Journal of Operational Research, 1996, pp.205-216.
DOI: 10.1016/s0377-2217(96)00170-1
Google Scholar
[18]
Project Scheduling Problem Library—PSPLIB, http://www.129.187.106.231/psplib/
Google Scholar
[19]
W. Chen, Y.J. Shi, H.F. Teng, X.P. Lan, L.C. Hu, An efficient hybrid algorithm for resource-constrained project scheduling, Information Sciences,vol. 180, 2010, p.1031–1039.
DOI: 10.1016/j.ins.2009.11.044
Google Scholar
[20]
R. Kolisch and S. Hartmann: Heuristic algorithms for solving the resource-constrained project scheduling problem - Classification and computational analysis; Kluwer; Weglarz, J. (Hrsg.): Handbook on recent advances in project scheduling , 1999, pp.147-178.
DOI: 10.1007/978-1-4615-5533-9_7
Google Scholar
[21]
J.J.M. Mendes, J.F. Goncalves, M.G.C. Resende, A random key based genetic algorithm for the resource constrained project scheduling problem, Computers & Operations Research, vol. 36, 2009, p.92–109.
DOI: 10.1016/j.cor.2007.07.001
Google Scholar