[1]
Wu jiarui. The Characteristics of Systems Biology. . In Chinese
Google Scholar
[2]
Hood L. A personal view of molecular technology and how it has changed biology. J Proteome Res, 2002,1 (5) :399-409
DOI: 10.1021/pr020299f
Google Scholar
[3]
Jiang Taijiao, Xue Yanhong, Xu Tao. Systems Biology:a New Field of Biological Science. Progress in Biochemistry and Biophysics, 2004,Vol.31, No.11: 958. In Chinese
Google Scholar
[4]
Lei Jun, Gu Min-min. Systems biology-An engineering perspective. World Science, No.7,2007:7-10. In Chinese
Google Scholar
[5]
Allen W. Cowley, Jr., Mingyu Liang. Physiology and genomics: toward systems biology. Acta Physiologica Sinica, Feb. 25, 2006, 58(1):1-4, www.actaps.com.cn
Google Scholar
[6]
Hiroaki Kitano (editor). Foundations of Systems Biology, MIT Press; October 15, (2001)
Google Scholar
[7]
Minna Allarakhia, Anthony Wensley. Systems biology: A disruptive biopharmaceutical research paradigm. Technological Forecasting and Social Change, 74, 2007:1643-1660
DOI: 10.1016/j.techfore.2006.07.012
Google Scholar
[8]
Yang Yu-di, Zhou Lu-jia. Mathematical models in systems biology and their applications. Letters in biotechnology, Vol.17, No.6, 2006: 981-984. In Chinese
Google Scholar
[9]
Ingalls, B. P..Metabolic Control Analysis from a control-theoretic perspective. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, December, 2006.
DOI: 10.1109/cdc.2006.377367
Google Scholar
[10]
Ingalls, B. P. and Sauro, H.M.. Sensitivity Analysis of Stoichiometric Networks: An Extension of Metabolic Control Analysis to Non-equilibrium Journal of Theoretical Biology, 222, 2003: 23-36
DOI: 10.1016/s0022-5193(03)00011-0
Google Scholar
[11]
Ana P. Teixeira, Nuno Carinhas, etc. Hybrid semi-parametric mathematical systems: Bridging the gap between systems biology and process engineering. Journal of Biotechnology, 132, 2007: 418-425
DOI: 10.1016/j.jbiotec.2007.08.020
Google Scholar
[12]
Olaf Wolkenhauer. Systems biology: The reincarnation of systems theory applied in biology?. Briefings in Bioinformatics, Vol.2, No.3, 2001: 258-270
DOI: 10.1093/bib/2.3.258
Google Scholar
[13]
N.A.W. van Riel, E.D. Sontag. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach. IEE Proc. Syst. Biol., Vol. 153, No.4, 2006: 263-274
DOI: 10.1049/ip-syb:20050076
Google Scholar
[14]
Wayne Materi and David S. Wishart. Computational systems biology in drug discovery and development: methods and applications. Drug discovery today, Vol.12, No.7/8, 2007: 295-303
DOI: 10.1016/j.drudis.2007.02.013
Google Scholar
[15]
K.–H. CHo*, O. Wolkenhauert. Analysis and modeling of signal transduction pathways in systems biology. Biochemical Society Transactions, Vol.31, 2003:1503-1509
DOI: 10.1042/bst0311503
Google Scholar
[16]
F. He, L. Yeung and M. Brown, Discrete-Time Model Representation for Biochemical Pathway Systems. IAENG International Journal of Computer Science, 34:1, IJCS_34_1_15
Google Scholar
[17]
Runge–Kutta methods. http://en.wikipedia.org/wiki/Runge_kutta
Google Scholar
[18]
E. A. Wan and R. der Merwe. The Unscented Kalman Filter for Nonlinear Estimation. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. Lake Louise, Alta., Canada, October, 2000: 153-158
DOI: 10.1109/asspcc.2000.882463
Google Scholar
[19]
O. Wolkenhauer. Systems Biology: Dynamic Pathway Modeling. www.sbi.uni-rostock.de, December, 2006:62
Google Scholar
[20]
S. J. Julier and J. K. Uhlmann, "A New Extension of the Kalman Filter to Nonlinear Systems," in Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., (1997)
Google Scholar