Investigation of Porous Block Porosity on Flow and Entropy Generation inside a T-Micromixer Using Lattice Boltzmann Method

Abstract:

Article Preview

In this study a two dimensional thermal Lattice Boltzmann model with nine velocities was used to study the flow pattern and thermal field inside a T-micromixer with a porous block. The effects of porosity of porous block and flow Reynolds number were investigated. The results showed that better mixing between hot and cold flows and more heat transfer to horizontal walls in contact with porous block in lower porosities; due to the fact that in lower porosities the effective thermal conductivity of porous block increases. In lower porosities due to higher mixing rates and thermal gradient the entropy generation will increase. According to results it was observed that model with lowest porosity has the maximum mixing rate between two entering hot and cold flows and maximum dimensionless entropy generation.

Info:

Periodical:

Edited by:

Mohamed Othman

Pages:

282-286

Citation:

M. A. Delavar, "Investigation of Porous Block Porosity on Flow and Entropy Generation inside a T-Micromixer Using Lattice Boltzmann Method", Applied Mechanics and Materials, Vols. 229-231, pp. 282-286, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] R.K. Thakur, Ch. Vial, K.D.P. Nigam, E.B. Nauman and G. Djelveh, Trans IChemE, Vol. 81, Part A (2003) p.787.

[2] K. J. Myers, A. Bakker, D. Ryan, Chem. Eng. Pro., Vol. 93 (6) (1997) p.28.

[3] S. H. Wong, M.C.L. Ward, C.W. Wharton, Sensors and Actuators B 100 (2004) p.359.

[4] S.J. Wang, S. Devahastin, A.S. Mujumdar, Applied Thermal Engineering, Vol. 26 (2006) p.519.

[5] S.M. Hosseinalipour, A.S. Mujumdar, Int. Comm. Heat and Mass Transfer, Vol. 24 (1997) p.27.

[6] S.M. Hosseinalipour, A.S. Mujumdar, Int. Comm Heat and Mass Transfer, Vol. 24 (1997) p.39.

[7] S.M. Hosseinalipour, A.S. Mujumdar, Numerical Heat Transfer, Part A, Vol. 28 (1995) p.647.

[8] D. Gobby, P. Angeli, A. Gavriilidis, J. Micromech. and Microeng., Vol. 11 (2001) p.126.

[9] A. Soleymani, H. Yousefi, I. Turunen, Chem. Eng. Science, Vol. 63 (2008) p.5291.

[10] M.A. Delavar, ASME proceeding of International Conference on Physics Science and Technology (ICPST 2011), Dubai (2011) p.55.

[11] H.J. Sung, S.Y. Kim, J.M. Hyun, Int. J. Heat Fluid Flow, Vol. 16 (1995) p.527.

[12] S. CHikh, A. Boumedien, K. Bouhadef, G. Lauriat, Num. Heat Trans. A, Vol. 28 (1995) p.707.

[13] A. Bejan, in: Advanced engineering thermodynamics, 2nd Ed. NY, Wiley (1997).

[14] P. Yuan, H.S. Kou, Numerical Heat Transfer, Part A, Vol. 43 (2003) p.619.

[15] S. Al"boud-saouli, N. Settou, S. Saouli, N. Mezrab, Applied Energy, 84 (2007) p.279.

[16] M.A. Delavar, M, Farhadi, K. Sedighi, Heat Transfer Research, Vol. 40 (2009) p.521.

[17] M.A. Delavar, M, Farhadi, K. Sedighi, Thermal Science, Vol. 15 (2) (2011) p.423.

[18] A.A. Mohammad, in: Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes, Springer, London, England (2011).

[19] T. Seta, E. Takegoshi, K. Kiatano, K. Okui, J. Thermal Sci. Tech., Vol. 1 (2006) p.90.

[20] S. Ergun, Chem. Eng. Prog., Vol. 48, (1952) p.89.

[21] P.X. Jiang, X. C Lu, Int. J. Heat and Mass Transfer, Vol. 49 (2006) p.1685.

[22] B. Alazmi, K. Vafai, Int. J. Heat and Mass Transfer, Vol. 44 (2001) p.1735.