Investigation of Porous Block Porosity on Flow and Entropy Generation inside a T-Micromixer Using Lattice Boltzmann Method

Article Preview

Abstract:

In this study a two dimensional thermal Lattice Boltzmann model with nine velocities was used to study the flow pattern and thermal field inside a T-micromixer with a porous block. The effects of porosity of porous block and flow Reynolds number were investigated. The results showed that better mixing between hot and cold flows and more heat transfer to horizontal walls in contact with porous block in lower porosities; due to the fact that in lower porosities the effective thermal conductivity of porous block increases. In lower porosities due to higher mixing rates and thermal gradient the entropy generation will increase. According to results it was observed that model with lowest porosity has the maximum mixing rate between two entering hot and cold flows and maximum dimensionless entropy generation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-286

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.K. Thakur, Ch. Vial, K.D.P. Nigam, E.B. Nauman and G. Djelveh, Trans IChemE, Vol. 81, Part A (2003) p.787.

Google Scholar

[2] K. J. Myers, A. Bakker, D. Ryan, Chem. Eng. Pro., Vol. 93 (6) (1997) p.28.

Google Scholar

[3] S. H. Wong, M.C.L. Ward, C.W. Wharton, Sensors and Actuators B 100 (2004) p.359.

Google Scholar

[4] S.J. Wang, S. Devahastin, A.S. Mujumdar, Applied Thermal Engineering, Vol. 26 (2006) p.519.

Google Scholar

[5] S.M. Hosseinalipour, A.S. Mujumdar, Int. Comm. Heat and Mass Transfer, Vol. 24 (1997) p.27.

Google Scholar

[6] S.M. Hosseinalipour, A.S. Mujumdar, Int. Comm Heat and Mass Transfer, Vol. 24 (1997) p.39.

Google Scholar

[7] S.M. Hosseinalipour, A.S. Mujumdar, Numerical Heat Transfer, Part A, Vol. 28 (1995) p.647.

Google Scholar

[8] D. Gobby, P. Angeli, A. Gavriilidis, J. Micromech. and Microeng., Vol. 11 (2001) p.126.

Google Scholar

[9] A. Soleymani, H. Yousefi, I. Turunen, Chem. Eng. Science, Vol. 63 (2008) p.5291.

Google Scholar

[10] M.A. Delavar, ASME proceeding of International Conference on Physics Science and Technology (ICPST 2011), Dubai (2011) p.55.

Google Scholar

[11] H.J. Sung, S.Y. Kim, J.M. Hyun, Int. J. Heat Fluid Flow, Vol. 16 (1995) p.527.

Google Scholar

[12] S. CHikh, A. Boumedien, K. Bouhadef, G. Lauriat, Num. Heat Trans. A, Vol. 28 (1995) p.707.

Google Scholar

[13] A. Bejan, in: Advanced engineering thermodynamics, 2nd Ed. NY, Wiley (1997).

Google Scholar

[14] P. Yuan, H.S. Kou, Numerical Heat Transfer, Part A, Vol. 43 (2003) p.619.

Google Scholar

[15] S. Al"boud-saouli, N. Settou, S. Saouli, N. Mezrab, Applied Energy, 84 (2007) p.279.

Google Scholar

[16] M.A. Delavar, M, Farhadi, K. Sedighi, Heat Transfer Research, Vol. 40 (2009) p.521.

Google Scholar

[17] M.A. Delavar, M, Farhadi, K. Sedighi, Thermal Science, Vol. 15 (2) (2011) p.423.

Google Scholar

[18] A.A. Mohammad, in: Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes, Springer, London, England (2011).

Google Scholar

[19] T. Seta, E. Takegoshi, K. Kiatano, K. Okui, J. Thermal Sci. Tech., Vol. 1 (2006) p.90.

Google Scholar

[20] S. Ergun, Chem. Eng. Prog., Vol. 48, (1952) p.89.

Google Scholar

[21] P.X. Jiang, X. C Lu, Int. J. Heat and Mass Transfer, Vol. 49 (2006) p.1685.

Google Scholar

[22] B. Alazmi, K. Vafai, Int. J. Heat and Mass Transfer, Vol. 44 (2001) p.1735.

Google Scholar