Poly Gate Proximity Effect Modeling for 40nm CMOS

Article Preview

Abstract:

A new compact and scalable psp model for the layout proximity effect of poly gate in 40nm CMOSFET is proposed. This model takes into account the impact of gate space and neighboring gates number on mobility and flatband voltage. With the silicon verification, saturation current change up to 5%–7% and flatband voltage change up to 6-8mv is modeled in the constructed model. Vthlin, Idlin and Gmmax are also monitored. These good results show the importance of the new model for circuit design in advanced CMOS node.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cao: MOSFET Modeling for 45nm and beyond, IEEE ACM international conference on Computer-aided design, Proceedings of the 2007 IEEE, pp.638-643.

DOI: 10.1109/iccad.2007.4397337

Google Scholar

[2] Ke-Wei Su, Yi-Ming Sheu, Chung-Kai Lin, et al.: A Scaleable Model for STI Mechanical Stress effect on Layout Dependence of MOS Electrical Characteristics, Custom Integrated Circuits Conference (2003), pp.245-248.

DOI: 10.1109/cicc.2003.1249396

Google Scholar

[3] Y.M. Sheu, K. W. Su, S.J. Yang, et al.: Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs, IEEE Custom Integrated Circuits Conference (2005), p.831–834.

DOI: 10.1109/cicc.2005.1568798

Google Scholar

[4] C. M. Hu, et al., in: BSIM4. 3. 0 MOSFET Model- User's Manual (2003).

Google Scholar

[5] X. Li, W. Wu, and D.B.M. Klaassen, in: PSP 102. 3(2008).

Google Scholar

[6] Liebmann R, Nawaz N, Bach K H, et al.: Efficient 2D approximation for Layout-dependence Relaxation of Etch Stop Liner Stress due to Contact Holes, SISPAD (2006), pp.173-175.

DOI: 10.1109/sispad.2006.282866

Google Scholar

[7] E. Morifuji, H. Aikawa and H. Yoshimura, et al.: Layout Dependence Modeling for 45-nm CMOS with Stress-Enhanced Technique, Vol. 56, No. 9 (2009), p.1991 – (1998).

DOI: 10.1109/ted.2009.2026121

Google Scholar

[8] H. Aikawa, E. Morifuji,T. Sanuki T, et al.: Variability aware modeling and characterization in standard cell in 45 nm CMOS with stress enhancement technique, IEEE VLSI, 2008, pp.90-91.

DOI: 10.1109/vlsit.2008.4588574

Google Scholar

[9] H. Tsuno,H. Anzai, M. Matsumura, et al.: Advanced analysis and modeling of MOSFET characteristic fluctuation caused by layout variation, IEEE VLSI, 2007, pp.204-205.

DOI: 10.1109/vlsit.2007.4339693

Google Scholar

[10] A.J. Scholten, G.D.J. Smit, and B.A. De Vries, et. al: The New CMC Standard Compact MOS Model PSP: advantages for RF applications, Solid-State Circuits, Vol. 44, Issue 5(2009), pp.1415-1424.

DOI: 10.1109/jssc.2009.2015821

Google Scholar

[11] A. Lachtefeld and D.A. Antoniadis: Invertigating the Relationship between Electron Mobility and Velocity in Deeply Scaled NMOS via Mechanical Stress, IEEE  Electron Device Letters , Vol. 22, No. 12(2001), pp.591-593.

DOI: 10.1109/55.974587

Google Scholar

[12] H. Park K.S. Jones J.A. Slinkmnn and M.E. Law, 'The Effects of Strain on Dopant Diffusion in Silicon, IEEE IEDM 1993, pp.303-306.

Google Scholar