Double Feature Combination: Region Contrast for Visual Salient Object Detection

Article Preview

Abstract:

Visual saliency detection has become an important step between computer vision and digital image processing. Recent methods almost form a computational model based on color, which are difficult to overcome the shortcoming with cluttered and textured background. This paper proposes a novel salient object detection algorithm integrating with region color contrast and histograms of oriented gradients (HoG). Extensively experiments show that our algorithm outperforms other state-of-art saliency methods, yielding higher precision and better recall rate, even lower mean absolution error.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

811-815

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and F. Nuflo. Modeling visual attention via selective tuning. Artificial Intelligence, 78(1-2):507-545, 1995.

DOI: 10.1016/0004-3702(95)00025-9

Google Scholar

[2] B. Olshausen, C. Anderson, and D. Van Essen. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13:4700-4719, 1993.

DOI: 10.1523/jneurosci.13-11-04700.1993

Google Scholar

[3] C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985.

DOI: 10.1007/978-94-009-3833-5_5

Google Scholar

[4] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254-1259, 1998.

DOI: 10.1109/34.730558

Google Scholar

[5] A. Borji, L. Itti. Exploiting Local and Global Patch Rarities for Saliency Detection. In CVPR, pages 478-485, 2012.

DOI: 10.1109/cvpr.2012.6247711

Google Scholar

[6] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk. Frequency-tuned salient region detection. In CVPR, pages 1597-1604, 2009.

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[7] R. Achanta, S. Süsstrunk. Saliency Detection using Maximum Symmetric Surround. In ICIP, pages 2653-2656, 2010.

Google Scholar

[8] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu. Global contrast based salient region detection. In CVPR, pages 409-416, 2011.

DOI: 10.1109/cvpr.2011.5995344

Google Scholar

[9] F. Perazzi, P. Krähenbühl, Y. Pritch and A. Hornung. Saliency Filters: Contrast Based Filtering for Salient Region Detection. In CVPR, pages 733-740, 2012.

DOI: 10.1109/cvpr.2012.6247743

Google Scholar

[10] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, pages 1-8, 2007.

Google Scholar

[11] J. Harel, C. Koch and P. Perona. Graph-Based Visual Saliency. In NIPS, pages 545-552, 2007.

Google Scholar

[12] T. Liu, J. Sun, N. Zheng, X. Tang, et al. Learning to detect a salient object. In CVPR, pages 353-367, 2007.

Google Scholar

[13] P. Wang, J.-D. Wang, G. Zeng, J. Feng, H.-B.Zha and S.-P. Li. Salient Object Detection for Searched Web Images via Global Saliency. In CVPR, pages 3194-3201, 2012.

DOI: 10.1109/cvpr.2012.6248054

Google Scholar

[14] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC Superpixels. Technical report, 2010.

Google Scholar

[15] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages 886-893, 2005.

Google Scholar

[16] Q. Zhu, S. Avidan, M.-C. Yeh and K.-T. Cheng. Fast human detection using a cascade of histograms of oriented gradients. In CVPR, pages 1491-1498, 2006.

DOI: 10.1109/cvpr.2006.119

Google Scholar