Vibration Frequency Fuzzy Adaptive Control of the Flexible Lunar Regolith Sampler Based on the Dynamic Pediction by Uing the RBFNN

Article Preview

Abstract:

The drilling efficiency can be improved effectively by controlling the lunar regolith sampler always in the resonance state. But the dynamical modeling of the sampler-regolith system is difficult to obtain and time varies when the sampler is in different depth in the lunar regolith. For the nonlinear time-varying system of the dynamic modeling of the sampler in drilling, we present a method of the vibration frequency fuzzy adaptive control based on the dynamic prediction by using the RBFNN. The Radial Basis Function (RBF) neural network with a FIR filter in series is used to predict the resonant frequency dynamically and decrease the overshoot. And the fuzzy adaptive control is used to calculate the sweeping frequency bandwidth with the input of the amplitude and variation. The simulation results have verified the effectiveness of the control strategy. The experimental results show that the control algorithm can improve the drilling depth, drilling efficiency and the discarding efficiency effectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1385-1391

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Anttila: Espoo:Helsinki University of Technology, Laboratory of Space Technology.( 2005)

Google Scholar

[2] M.Bucek, J. H.Agui, X.W. Zeng, et al: Proceedings of the 11th Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach, California, USA. March,pp.1-10 (2008)

Google Scholar

[3] F. Richard: Proceeding of the 10th European Space Mechanisms and Tribology Symposium. Noordwijk, Netherlands.pp.255-262(2003)

Google Scholar

[4] D.W. Beaty, S.Miller,W.Zimmerman, et. al: Planetary and Space Science 52(1) . pp.55-66(2004)

Google Scholar

[5] F. A.Shirazi, J.Monhammadpour, K. M.Grigoriadis , Song Gangbing: IEEE Transanctions on Control Systems Technology, Vol.20, No.5. pp.1285-1301.(2012)

Google Scholar

[6] F. A. Shirazi, K. M. Grigoriadis, and G. Song: Control Conf., San Francisco, CA.(2011)

Google Scholar

[7] C. Spelta, F. Previdi, S. M. Savaresi, et. al: Mechatronics, Vol.19, pp.410-421(2009)

Google Scholar

[8] D. Q. Truong, Q. T.Truong, K. A.Kyoung: International Journal of Precision Engineering and Manufacturing, Vol.13, No.8, pp.1403-1411(2012)

Google Scholar

[9] J. Lin, Y. B. Zheng: Journal of Sound and Vibration, Vol.331, No.16,pp.3677-3694.(2012)

Google Scholar

[10] N. Kumar, S. P. Singh: Mechanical Systems and Signal Processing, Vol.30,No., pp.232-247. (2012)

Google Scholar

[11] H. G. Han, J. F. Qiao: Journal of Process Control, Vol.22, No.6,pp.1103-1112.(2012)

Google Scholar

[12] L. Yu, K. K. Lai, Shouyang Wang: Neurocomputing, (71),pp.3295-3302.(2008)

Google Scholar

[13] L. Guo, L. Parasa: IEEE Trans. Ind. Electron., Vol.59, No.3,pp.1500-1508.(2010)

Google Scholar

[14] C. E. Castaneda, A. G. Loukianov, E. N. Sanchez, et. al: IEEE Trans. Ind. Electron., Vol.59, No.2, pp.1194-1207. (2012)

Google Scholar

[15] S.H. Chung, H. K. Chan: IEEE Trans. Ind. Electron., Vol.59, No.1,pp.611-619.(2012)

Google Scholar

[16] C. H. Chiu, C. C. Chang: IEEE Trans. Ind. Electron., Vol.59, No.12, pp.4774-4783.(2012)

Google Scholar