[1]
Jinming Lu, Chuntao Wang, Haigang Zhou. Misfire fault diagnosis of diesel engiie based on EMD. Journal of Jiangsu University of Science and Technology, vol. 23, no. 1, pp.234-238, Jun, (2009).
Google Scholar
[2]
Norden E. Huang, etc. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc.R. Soc. Lond. A, 1998, pp.903-995.
Google Scholar
[3]
J. Jeong, S J. Kim, Non-linear dynamical analysis of the EEG in Alzheimers disease with optimal embedding dimension. Electroenceph Clin Neurophysiol, 1998, pp.220-228.
DOI: 10.1016/s0013-4694(97)00079-5
Google Scholar
[4]
Anishchenko V. Stochastic R: noise-enhanced order. Physics Uspekhi, vol. 42, no. 1, pp.7-36, (1999).
Google Scholar
[5]
Sun Bin, Zhou Yunlong, Zhong Jinshan. Identification method of gas- liquid two-phase flow regime based on complexity feature. Chemical Engineering (China), vol. 36, no. 4, pp.27-30, Apr, (2008).
Google Scholar
[6]
Lempel A, Ziv J. On the complexity of finite sequenced. IEEE Transactions on Information Theory, vol. 22, no. 1, pp.75-81, Jan, (1976).
DOI: 10.1109/tit.1976.1055501
Google Scholar
[7]
D. Abasolo, Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure, Medical Engineering&Phsics vol. 28, 2006, pp.315-322.
DOI: 10.1016/j.medengphy.2005.07.004
Google Scholar
[8]
X.S. Zhang R.J. Roy, and E.W. Jensen, EEG complexity as a measure of depth of anesthesia for patients, IEEE Trans. Biomed. Eng, vol. 48, no. 12, pp.1424-1433, Dec. (2001).
DOI: 10.1109/10.966601
Google Scholar
[9]
R. Nagarajan, Quantifying physiological data with Lempel-Ziv complexity-certain issues, IEEE Trans. Biomed. Eng, vol. 49, no. 11, pp.1371-1373, Nov. (2002).
DOI: 10.1109/tbme.2002.804582
Google Scholar
[10]
Vapnik V N. The Nature of Statistical Learning Theory. New York: Spring Verag, (1995).
Google Scholar
[11]
Kressel U. Pairwise classification and support vector machines. In Scholkopf B. et al(Eds), Advances in kernel Methods Support vector learning. Cambridge, MA, MIT Press, 1999, pp.255-268.
DOI: 10.7551/mitpress/1130.003.0020
Google Scholar
[12]
Platt J, Cristianini N, Shawe-Taylor J. Large margin DAG's for multiclassification. In: Advances in Neural Information Processing Systems Cambridge. MA, MIT Press, Vol. 1, No. 12, pp.547-553, Jan, (2000).
Google Scholar
[13]
Xuedong Zhu, Ping Hu. The design of Multi-fault classification based on Huffman binary tree. Journal of Beijing Union University(Natural Sciences), Vol. 23, No. 2, pp.26-29, Jun, (2009).
Google Scholar
[14]
Xu Renlin, An Wei. Wavelet Denoise Application in the Signal Hilbert Transform Based on EMD. Noise and Vibration Control, vol. 74, no. 4, pp.74-77, Jun, (2008).
Google Scholar