Correlation between Optical and Electrical Properties of the Pulsed-Laser Deposited Amorphous Films of Germanium

Article Preview

Abstract:

Amorphous films of germanium (thicknesses 25 - 450 nm) were obtained on glass substrate at room temperature by the vacuum (residual gas pressure 3´10-6 mm Hg) pulsed-laser (Q-switched glass: Nd3+ laser (1.064 µm wavelength, 30 ns pulse duration, laser energy - 3 J per pulse, laser intensity on Ge target ~109 W/cm2)) deposition method. The comprehensive study of the optical and electrical properties of amorphous films of germanium showed the presence of two types (A and B) of films with different characteristics. With increasing of film thickness from 100 nm to 450 nm we observe the transition from the prevailing topological disorder (A- type) to the quantify disorder (B- type) in the region of 300-350 nm. Thicker films are characterized by a more homogeneous “network” of bonds, which minimizes the number of defects and localized states in the “forbidden” gap and, consequently, increases the resistivity and optical gap. An increase of the resistivity and optical gap is observed with decreasing film thickness (< 100 nm), which is explained by an increasing influence of natural oxidation of thin films. The results of temperature measurements for A- type films shows that the temperature dependence of resistivity is characterized by Mott's law (lnρ ~ T-1/4) in the temperature range of 100-240 K, while for B- type it indicates an activation character (lnR ~ ΔEa/kT) in the temperature range of 150-350 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

320-324

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Clark, Electrical and Optical Properties of Amorphous Germanium, Phys. Rev. 154 (1967) 750-757.

DOI: 10.1103/physrev.154.750

Google Scholar

[2] K.L. Chopra and S.K. Bahl, Structural, Electrical, and Optical Properties of Amorphous Germanium Films, Phys. Rev. B 1 (1970) 2545-2556.

DOI: 10.1103/physrevb.1.2545

Google Scholar

[3] Y. Hamakawa, Amorphous Semiconductors (Technologies & Devices), Tokyo-Osaka-Kyoto, (1983).

Google Scholar

[4] E.S.M. Goh, T.P. Chen et al, Thickness effect on the band gap and optical properties of germanium thin films, J. of Appl. Phys. 107 (2010) 024305-024309.

DOI: 10.1063/1.3291103

Google Scholar

[5] M.H. Brodsky, Amorphous Semiconductors, Springer-Verlag, Berlin, New York, (1979).

Google Scholar

[6] S.V. Gaponov, A.A. Gudkov, E.V. Kluenkov, M.D. Strikovskij, Vacuum laser deposition and epitaxy, Sov. Electronnaja Promishlennost 5-6 (1981) 110-119.

Google Scholar

[7] J.C. Miller, Laser Ablation - Principles and Applications, Springer-Verlag, Berlin, (1994).

Google Scholar

[8] A.G. Alexanian, N.S. Aramyan, K.E. Avjyan, A.M. Khachatryan, R.P. Grigoryan and A.S. Yeremyan, Technology of PLD for photodetector materials, in: R.A. Potirailo and W.F. Maier (Eds. ), Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, CRC/Taylor & Francis, 2006, pp.447-467.

DOI: 10.1201/9781420005387.ch23

Google Scholar

[9] J.C.G. de Sande, C.N. Afonso, J.L. Escudero, R. Serna, F. Catalina, E. Bernabeu, Optical properties of laser-deposited a-Ge films: a comparison with sputtered and e-beam-deposited films, Appl. Optics 31(28) (1992) 6133-6138.

DOI: 10.1364/ao.31.006133

Google Scholar

[10] A. G. Alexanian, H. N. Avetisyan, K. E. Avjyan, A. M. Khachatryan, G. M. Pluzyan, A. S. Yeremyan, Fabrication of Ohmic Contacts to n-Type Silicon Using Тhe Method of Pulsed Laser Deposition, in: B. Pődör, Zs. J. Horváth, P. Basa (Eds. ), Proc. 1st Int. Workshop on Semiconductor Nanocrystals, SEMINANO 2005, Budapest, 2005, p. pp.309-312.

Google Scholar

[11] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Stat. Sol. (b) 15 (1966) 627-637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[12] M.L. Theye, A. Gheorghiu, T. Rappeneau, A. Lewis, Transport properties of evaporated versus sputtered amorphous germanium films, J. Physique 41 (1980) 1173-1181.

DOI: 10.1051/jphys:0198000410100117300

Google Scholar

[13] L.J. Pilione, K. Vedam, J.E. Yehoda, R. Messier, P.J. McMarr, Thickness dependence of optical gap and void fraction for sputtered amorphous germanium, Phys. Rev. B 35 (1987) 9368-9371.

DOI: 10.1103/physrevb.35.9368

Google Scholar

[14] P.J. McMarr, J.R. Blanco, K. Vedam, R. Messier, and L. Pilione, Thickness-dependent void fraction of rf-sputtered amorphous Ge films by spectroscopic ellipsometry, Appl. Phys. Lett. 49 (1986) 328-330.

DOI: 10.1063/1.97157

Google Scholar

[15] J.C. Phillips, Covalent Bonding in Crystals, Comments Sol. St. Phys. 4 (1971) 9.

Google Scholar