Constitutive Equations for Hot Deformation of Plain-Carbon Steel

Article Preview

Abstract:

In order to optimize the hot deformation processing, useful and efficient mathematical models able to evaluate the different aspects of the response of plain carbon steel to hot plastic deformation are among the most important prerequisites. In this paper, a group of mathematical equations were developed according to a series of experiments data to model the austenite grain evolution, static and dynamic recrystallization during-deformation and post-deformation of plain carbon steel. And then those equations were implemented into ABAQUS6.5 (License Agreement Identifier: 27SHANU) using the VUMAT for numerical simulations of cylinder specimen compression.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-330

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. M. MACCAGNO. J. J. JONAS and P. D. HODGSON, Spreadsheet Modeling of Grain Size Evolution during Rod Rolling, ISIJ International. Vol. 36 (1996). No. 6. pp.720-728.

DOI: 10.2355/isijinternational.36.720

Google Scholar

[2] F. SICILIANO Jr., K. MINAMI, T. M. MACCAGNO and J. J. JONAS, Mathematical Modeling of Mean Flow Stress, Fractional Softening and Grain Size during the Hot Strip Rolling of C-Mn-Steels, ISIJ International, Vol. 36(1996). No. 12, pp.1500-506.

DOI: 10.2355/isijinternational.36.1500

Google Scholar

[3] K.P. Rao, Y.K.D.V. Prasad and E.B. Hawbolt, HOT DEFORMATION STUDIES ON A LOW-CARBON STEEL: PART 1-FLOW CURVES AND THE CONSTITUTIVE RELATIONSHIP, Journal of Materials Processing Technology 56 (1996) 897-907.

DOI: 10.1016/0924-0136(95)01902-2

Google Scholar

[4] K.P. Rao, Y.K.D.V. Prasad and E.B. Hawbolt, HOT DEFORMATION STUDIES ON A LOW-CARBON STEEL: PART 2-AN ALGORITHM FOR THE FLOW STRESS DETERMINATION UNDER VARYING PROCESS CONDITIONS, Journal of Materials Processing Technology 56 (1996) 908-917.

DOI: 10.1016/0924-0136(95)01903-0

Google Scholar

[5] F. G. CABALLERO, C. CAPDEVILA and C. GARCÍA DE ANDRÉS Modeling of Kinetics of Austenite Formation in Steels with Different Initial Microstructures, ISIJ International, Vol. 41 (2001), No. 10, pp.1093-1102.

DOI: 10.2355/isijinternational.41.1093

Google Scholar

[6] J.M. Cabrera, J. Ponce, J.M. Prado, Modeling thermomechanical processing of austenite, Journal of Materials Processing Technology 143–144 (2003) 403–409.

DOI: 10.1016/s0924-0136(03)00441-2

Google Scholar

[7] P D Hodgson, Microstructure modeling for property prediction and control, Journal of Materials Processing Technology 60 (1996)27-33.

Google Scholar

[8] S. R. Wang and A. A. Tseng, Macro- and micro-modeling of hot rolling of steel coupled by a micro-constitutive relationship, PII: SO261-3069 (96) 00005-2.

DOI: 10.1016/0261-3069(96)00005-2

Google Scholar

[9] J. Lin , T.A. Dean, Modeling of microstructure evolution in hot forming using unified constitutive equations, Journal of Materials Processing Technology 167 (2005) 354-362.

DOI: 10.1016/j.jmatprotec.2005.06.026

Google Scholar

[10] Y. Liu, J. Lin, Modelling of microstructural evolution in multipass hot rolling, Journal of Materials Processing Technology 143-144 (2003) 723-728.

DOI: 10.1016/s0924-0136(03)00379-0

Google Scholar

[11] N. Bontcheva , G. Petzov , Total simulation model of the thermo-mechanical process, in shape rolling of steel rods Computational Materials Science 34 (2005) 377-388.

DOI: 10.1016/j.commatsci.2005.01.009

Google Scholar

[12] M. Glowacki, The mathematical modelling of thermo-mechanicalprocessing of steel during multi-pass shape rolling, Journal of Materials Processing Technology 168 (2005) 336–343.

DOI: 10.1016/j.jmatprotec.2004.12.007

Google Scholar