[1]
L. Zhao, C. Hu. Applications and dynamic analysis of functionally graded materials. Technology And Materials. 18 (2011) 93-96.
Google Scholar
[2]
Y.Y. Zhang, L.C. Guo. Finite element analysis of functionally graded plate with a crack under thermal load. Journal of Harbin Institute of Technology. 43 (2011) 12-15.
Google Scholar
[3]
B.L. Wang, N. Noda. Thermally induced fracture of a smart functionally graded composite structure. Theoretical and Applied Fracture Mechanics. 35 (2001) 93-109.
DOI: 10.1016/s0167-8442(00)00052-5
Google Scholar
[4]
J. Li, S.F. Miao, W. Zhang. Analysis on bifurcations of multiple limit cycles for a parametrically and externally excited mechanical system. Chaos, Solitons and Fractals. 31 (2007) 960-976.
DOI: 10.1016/j.chaos.2005.10.065
Google Scholar
[5]
X.L. Liu, M.A. Han. Bifurcation of periodic solutions and invariant tori for a four-dimensional system. Nonlinear Dyn. 57 (2009) 75-83.
DOI: 10.1007/s11071-008-9421-8
Google Scholar
[6]
S.L. Lee, J.H. Kim. Thermal post-bucking and limit-cycle oscillation of functionally graded panel with structural damping in supersonic airflow. Composite Structures. 91 (2009) 205-211.
DOI: 10.1016/j.compstruct.2009.05.002
Google Scholar
[7]
Z.Q. Wu, R. Ding. Mode interaction of functionally graded plate subjected to aero-thermal load. Conference of Nonlinear Dynamics and Stability of Motion. (2009).
Google Scholar
[8]
P. Malekzadeh. Out-of-plane free vibration of functionally graded circular curved beams in thermal environment. Composite Structures. 91 (2010) 676-683.
DOI: 10.1016/j.compstruct.2009.08.040
Google Scholar
[9]
S.L. Lee, J.H. Kim. Thermal post-buckling and the stability boundaries of structurally damped functionally graded panels in supersonic airflows. Composite Structures. 92(2010) 422-429.
DOI: 10.1016/j.compstruct.2009.08.022
Google Scholar
[10]
H.Y. Yao, M.A. Han. The number of limit cycles of a class of polynomial differential systems. Nonlinear Analysis. 75(2012) 341-357.
DOI: 10.1016/j.na.2011.08.037
Google Scholar
[11]
J. Li, Y. Chen. Computation of Lyapunov values for two planar polynomial differential systems. Applied Mathematics and Computation. 24 (2008) 240-248.
DOI: 10.1016/j.amc.2008.06.032
Google Scholar