[1]
R.C. Battista, R.S. Rodrigues, M.S. Pfeil, Dynamic behavior and stability of transmission line towers under wind forces, Journal of Wind Engineering and Industrial Aerodynamics, 91 (2003) 1051-1067.
DOI: 10.1016/s0167-6105(03)00052-7
Google Scholar
[2]
J. -H. Park, B. -W. Moon, K. -W. Min, S. -K. Lee, C. Kyeong Kim, Cyclic loading test of friction-type reinforcing members upgrading wind-resistant performance of transmission towers, Engineering Structures, 29 (2007) 3185-3196.
DOI: 10.1016/j.engstruct.2007.03.022
Google Scholar
[3]
H. Yasui, H. Marukawa, Y. Momomura, T. Ohkuma, Analytical study on wind-induced vibration of power transmission towers, Journal of Wind Engineering and Industrial Aerodynamics, 83 (1999) 431-441.
DOI: 10.1016/s0167-6105(99)00091-4
Google Scholar
[4]
M. Piedboeuf, R. Gauvin, M. Thomas, Damping behaviour of shape memory alloys: strain amplitude, frequency and temperature effects, Journal of Sound and Vibration, 214 (1998) 885-901.
DOI: 10.1006/jsvi.1998.1578
Google Scholar
[5]
S. John A, A thermomechanical model for a 1D shape memory alloy wire with propagating instabilities, International Journal of Solids and Structures, 39 (2002) 1275-1305.
DOI: 10.1016/s0020-7683(01)00242-6
Google Scholar
[6]
J.A. Shaw, B. -c. Chang, M.A. Iadicola, Y.M. Leroy, Thermodynamics of a 1D shape memory alloy: modeling, experiments, and application, in: R.C. Smith (Ed. ), SPIE, San Diego, CA, USA, 2003, pp.76-87.
DOI: 10.1117/12.507947
Google Scholar
[7]
X. Gao, R. Qiao, L.C. Brinson, Phase diagram kinetics for shape memory alloys: a robust finite element implementation, Smart Materials & Structures, 16 (2007) 2102-2115.
DOI: 10.1088/0964-1726/16/6/013
Google Scholar
[8]
M. Frost, P. Sedlak, M. Sippola, P. Sittner, Thermomechanical model for NiTi shape memory wires, Smart Materials & Structures, 19 (2010).
DOI: 10.1088/0964-1726/19/9/094010
Google Scholar
[9]
A. Baz, K. Imam, J. McCoy, Active vibration control of flexible beams using shape memory actuators, Journal of Sound and Vibration, 140 (1990) 437-456.
DOI: 10.1016/0022-460x(90)90760-w
Google Scholar
[10]
K. Williams, G. Chiu, R. Bernhard, Adaptive-passive absorbers using shape-memory alloys, Journal of Sound and Vibration, 249 (2002) 835-848.
DOI: 10.1006/jsvi.2000.3496
Google Scholar
[11]
F. Gandhi, G. Chapuis, Passive damping augmentation of a vibrating beam using pseudoelastic shape memory alloy wires, Journal of Sound and Vibration, 250 (2002) 519-539.
DOI: 10.1006/jsvi.2001.3935
Google Scholar
[12]
K. Williams, G.T.C. Chiu, R. Bernhard, Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber, Journal of Sound and Vibration, 280 (2005) 211-234.
DOI: 10.1016/j.jsv.2003.12.040
Google Scholar
[13]
K.A. Williams, G.T.C. Chiu, R.J. Bernhard, Nonlinear control of a shape memory alloy adaptive tuned vibration absorber, Journal of Sound and Vibration, 288 (2005) 1131-1155.
DOI: 10.1016/j.jsv.2005.01.018
Google Scholar
[14]
A. Jafari, H. Ghiasvand, Dynamic response of a pseudoelastic shape memory alloy beam to a moving load, Journal of Sound and Vibration, 316 (2008) 69-86.
DOI: 10.1016/j.jsv.2008.02.042
Google Scholar
[15]
P.W. Clark, I.D. Aiken, J.M. Kelly, M. Higashino, R. Krumme, Experimental and analytical studies of shape-memory alloy dampers for structural control, in: C.D. Johnson (Ed. ), SPIE, San Diego, CA, USA, 1995, pp.241-251.
DOI: 10.1117/12.208891
Google Scholar
[16]
R. Krumme, J. Hayes, S. Sweeney, Structural damping with shape-memory alloys: one class of devices, in: C.D. Johnson (Ed. ), SPIE, San Diego, CA, USA, 1995, pp.225-240.
DOI: 10.1117/12.208890
Google Scholar
[17]
M. Dolce, D. Cardone, R. Marnetto, Implementation and testing of passive control devices based on shape memory alloys, Earthquake Engineering & Structural Dynamics, 29 (2000) 945-968.
DOI: 10.1002/1096-9845(200007)29:7<945::aid-eqe958>3.0.co;2-#
Google Scholar
[18]
M. Dolce, D. Cardone, R. Marnetto, M. Mucciarelli, D. Nigro, F. Ponzo, G. Santarsiero, Experimental static and dynamic response of a real RC frame upgraded with SMA re-centering and dissipating braces, in: 13th World Conference on Earthquake Engineering, Vancouver, (2004).
Google Scholar
[19]
M. Speicher, D.E. Hodgson, R. DesRoches, R.T. Leon, Shape memory alloy tension/compression device for seismic retrofit of buildings, Journal of materials engineering and performance, 18 (2009) 746-753.
DOI: 10.1007/s11665-009-9433-7
Google Scholar
[20]
K. Tanaka, A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT - ONE-DIMENSIONAL TENSILE BEHAVIOR, Res Mechanica, 18 (1986) 251-263.
Google Scholar
[21]
C. Liang, C. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, J Intel Mat Syst Str, 1 (1990) 207-234.
DOI: 10.2514/6.1990-1027
Google Scholar
[22]
L. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J Intel Mat Syst Str, 4 (1993) 229-242.
DOI: 10.1177/1045389x9300400213
Google Scholar
[23]
L. Brinson, A. Bekker, S. Hwang, Deformation of shape memory alloys due to thermo-induced transformation, J Intel Mat Syst Str, 7 (1996) 97-107.
DOI: 10.1177/1045389x9600700111
Google Scholar
[24]
D.P. Mario, Digital simulation of wind field velocity, Journal of Wind Engineering and Industrial Aerodynamics, 74–76 (1998) 91-109.
DOI: 10.1016/s0167-6105(98)00008-7
Google Scholar
[25]
R. Rossi, M. Lazzari, R. Vitaliani, Wind field simulation for structural engineering purposes, International Journal for Numerical Methods in Engineering, 61 (2004) 738-763.
DOI: 10.1002/nme.1083
Google Scholar
[26]
A.G. Davenport, The spectrum of horizontal gustiness near the ground in high winds, Quarterly Journal of the Royal Meteorological Society, 87 (1961) 194-211.
DOI: 10.1002/qj.49708737208
Google Scholar