[1]
P.G. Su, Y.L. Sun, C.C. Lin, Humidity sensor based on PMMA simultaneously doped with two different salts, Sens. Actuators B 113(2006)883–886.
DOI: 10.1016/j.snb.2005.03.052
Google Scholar
[2]
Y. Li, B.Y. Ying, L.J. Hong, M.J. Yang, Water-soluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing, Synthetic Metals 160 (2010) 455–461.
DOI: 10.1016/j.synthmet.2009.11.031
Google Scholar
[3]
M. S Gong, J.U. Kim, J.G. Kim, Preparation of water-durable humidity sensor by attachment of polyelectrolyte membrane to electrode substrate by photochemical crosslinking reaction, Sens. Actuators B 147 (2010)539-547.
DOI: 10.1016/j.snb.2010.04.017
Google Scholar
[4]
K.P. Yoo, L.T. Lim, N.K. Min, M.J. Lee, C.J. Lee, C.W. Park, Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films, Sens. Actuators B 145(2010) 120-125.
DOI: 10.1016/j.snb.2009.11.041
Google Scholar
[5]
J. H. Kim, J. H. Moon, S.Y. Lee, J. Park, Biologically inspired humidity sensor based on three-dimensional photonic crystals, Appl. Phys. Lett. 97(2010) 103701.
DOI: 10.1063/1.3486115
Google Scholar
[6]
M. M. Hawkeye, M. J. Brett, Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition, Adv. Funct. Mater. 21(2011) 3652-3658.
DOI: 10.1002/adfm.201100893
Google Scholar
[7]
X. L Hu, J.M. Gong, L.Z. Zhang, J.C. Yu, Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-Polyol Process and Their Application for Humidity Sensing, Adv. Mater. 20(2008) 4845–4850.
DOI: 10.1002/adma.200801433
Google Scholar
[8]
Z.Y. Li, H.N. Zhang, W. Zheng, W. Wang, H.M. Huang, C. Wang, A.G. MacDiarmid, Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers, J. Am. Chem. Soc. 130(2008)5036-5037.
DOI: 10.1021/ja800176s
Google Scholar
[9]
S.M. Hu, G. Fu, Humidity-sensitive properties based on liquid state LiZnVO4-doped SnO2, Sensors and Actuators A 163(2010) 481–485.
DOI: 10.1016/j.sna.2010.08.030
Google Scholar
[10]
S.H. Feng, M. Greenblatt, Proton Conductivity and Humidity-Sensing Properties at High Temperature of the NASICON-Based Composite Material HZr2P3O12·ZrP2O7, . Chem. Mater. 5 (1993) 1277-1282.
DOI: 10.1021/cm00033a016
Google Scholar
[11]
S.H. Feng, M.T. Tsai, M. Greenblatt, Preparation, Ionic Conductivity, and Humidity-Sensing Property of Novel, Crystalline Microporous Germanates, Na3HGe, 016*xH20 x, = 0. 6-1., Chem. Mater. 4(1992) 388-393.
DOI: 10.1021/cm00020a029
Google Scholar
[12]
Q. Yuan, N. Li, J.C. Tu, X.T. Li, R. Wang, T. Zhang, C.L. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite, Sens. Actuators B 149(2010) 413-419.
DOI: 10.1016/j.snb.2010.06.036
Google Scholar
[13]
J. Liu, F.X. Sun, F. Zhang, Z. Wang, R. Zhang, C. Wang, S.L. Qiu, In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing, J. Mater. Chem. 21 (2011) 3672-3676.
DOI: 10.1039/c0jm03123b
Google Scholar
[14]
C.T. Kresge, M.E. Leonowicz, W.J. Roth, Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism, Nature 359(1992) 710-712.
DOI: 10.1038/359710a0
Google Scholar
[15]
A. Bearzotti, J.M. Bertolo, P. Innocenzi, P. Falcaro, E. Traversa, Relative humidity and alcohol sensors based on mesoporous silica thin films synthesized from block copolymers, Sens. Actuators B 95(2003) 107–110.
DOI: 10.1016/s0925-4005(03)00416-7
Google Scholar
[16]
T. Zhang, R. Wang, W.C. Geng, X.T. Li , Q. Qi, Y. He, S.J. Wang, Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15, Sens. Actuators B 128(2008) 482–487.
DOI: 10.1016/j.snb.2007.07.012
Google Scholar
[17]
J.C. Tu, R. Wang, W.C. Geng, X.Y. Lai, T. Zhang, N. Li , N.L. Yue, X.T. Li, Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16, Sens. Actuators B 136(2009) 392–398.
DOI: 10.1016/j.snb.2008.12.006
Google Scholar
[18]
Q. Yuan, W.C. Geng, N. Li, J.C. Tu, R. Wang, T. Zhang , X.T. Li, Study on humidity sensitive property of K2CO3-SBA-15 composites, Applied Surface Science 256 (2009) 280-283.
DOI: 10.1016/j.apsusc.2009.08.016
Google Scholar
[19]
Y.H. Zhu, H. Li, J.Q. Xu, H. Yuan, J.J. Wang, X.X. Li, Monodispersed mesoporous SBA-15 with novel morphologies: controllable synthesis and morphology dependence of humidity sensing, Cryst. En. g. Comm. 13(2011) 402-405.
DOI: 10.1039/c0ce00570c
Google Scholar
[20]
W. C. Geng, R. Wang, X. T. Li, Y. C. Zou, T. Zhang, J. C. Tu , Y. He , N. Li, Humidity sensitive property of Li-doped mesoporous silica SBA-15, Sens. Actuators B 127(2007) 323-329.
DOI: 10.1016/j.snb.2007.04.021
Google Scholar
[21]
K. C. Mouli, K. Soni, A. Dalai, J. Adjaye, Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil, Applied Catalysis A: General 404 (2011) 21–29.
DOI: 10.1016/j.apcata.2011.07.001
Google Scholar
[22]
C.T. Wang, C.L. Wu, Electrical sensing properties of silica aerogel thin films to humidity,. Thin Solid Films 496 (2006) 658 – 664.
DOI: 10.1016/j.tsf.2005.09.001
Google Scholar
[23]
P. Bhange , D. S. Bhange, S. Pradhan, V. Ramaswamy. Direct synthesis of well-ordered mesoporous Al-SBA-15 and its correlation with the catalytic activity, Applied Catalysis A: General 400 (2011) 176–184.
DOI: 10.1016/j.apcata.2011.04.031
Google Scholar
[24]
J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water ,J. Phys. Chem. 72(1968) 3662–3668.
DOI: 10.1021/j100856a051
Google Scholar