[1]
F.A. Settle, Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall PTR, Upper Saddle River, NJ07458 (1997), p.979, ISBN 0-13-177338-0.
DOI: 10.1021/ja975671k
Google Scholar
[2]
J.B. Lambert, H.F. Shurvell, D.A. lightner, R.G. Cooks, Organic Structurel Spectroscopy, Prentice Hall PTR, Upper Saddle River, NJ (1998), p.568, ISBN 0-13-25890-8.
Google Scholar
[3]
S. Honus, V. Sassmanová, J. Frantík, D. Juchelková, Z. Mikulová, Evaluation of duality of output produkt in the technology group for pyrolysis organic waste substance, Transactions of VSB – Technical University Ostrava, Mechanical Series, No. 1, Vol. LVII, (2011).
DOI: 10.22223/tr.2011-1/1842
Google Scholar
[4]
A. Napoli, Y. Soudais, D. Lecomte, S. Castillo, Scrap tyre pyrolysis: Are the effluents valuable products, Journal of Analytical and Applied Pyrolysis (1997), pp.337-382.
DOI: 10.1016/s0165-2370(97)00011-9
Google Scholar
[5]
M.K. -K. Firueiredo, G.A. Romeiro, R.N. Damasceno, Low temperature conversion (LTC) of castor seeds: A study of the oil fraction (pyrolysis oil), Journal of Analytical and Applied Pyrolysis (2009), Vol. 86, pp.53-57.
DOI: 10.1016/j.jaap.2009.04.006
Google Scholar
[6]
M.R. Islam, M.S.H.K. Tushara, H. Haniu, Production of liquid fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire Wales, Journal of Analytical and Applied Pyrolysis (2008), pp.96-109.
DOI: 10.1016/j.jaap.2008.02.005
Google Scholar
[7]
C. Quan, A. Li, N. Gao, Z. Dan, Characterization of products recycling from PCB waste pyrolysis, Journal of Analytical and Applied Pyrolysis (2010), Vol. 89, pp.102-106.
DOI: 10.1016/j.jaap.2010.06.002
Google Scholar
[8]
A. Sınağ, B. Uskan, S. Gülbay, Detailed characterization of the pyrolytic liquids obtained by pyrolysis of sawdust, Journal of Analytical and Applied Pyrolysis (2011), Vol. 90, pp.48-52.
DOI: 10.1016/j.jaap.2010.10.003
Google Scholar
[9]
P. Jandara, Atomová a molekulová spektroskopie se zaměřením na stopovou analýzu, Díl B, Molekulová spektroskopie v organické analýze. Pardubice: Univerzita Pardubice (2006).
Google Scholar
[10]
Infrared Spectroscopy: Theory, Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem, (2002).
Google Scholar
[11]
K. Smets, P. Adriaensens, G. Reggers, S. Schreurs, R. Carleer, J. Yperman, Flash pyrolysis of repeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid, Journal of Analytical and Applied Pyrolysis (2011).
DOI: 10.1016/j.jaap.2010.11.002
Google Scholar
[12]
M.R. Islam, M. Parveen, H. Havin, M.R. Islams Sarker, Innovation in Pyrolysis Technology for Management of Sharp Tire: a Solution of Energy and Environment, International Journal of Environmental Science and Development (2010).
DOI: 10.7763/ijesd.2010.v1.18
Google Scholar
[13]
J. Vymětal, M. Plesník, Zpracování černouhelného dehtu a smoly. Studijní příručka I., DEZA a. s. Valašské Meziříčí (1994).
Google Scholar
[14]
J.F. Gonzalez, J.M. Encinar, J.L. Canito, J.J. Rodriguez, Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. Journal of Analytical and Applied Pyrolysis (2001), p.667–683.
DOI: 10.1016/s0165-2370(00)00201-1
Google Scholar
[15]
P.T. Williams, S. Hesper, D.T. Tailor, The pyrolysis of scrap automotive tires: the influence of temperature and heating rate on product composition, Fuel (1990), vol. 69, p.1474–1482.
Google Scholar
[16]
Z. Holzbecher, J. Churáček a kol.: Analytická chemie, Praha: SNTL (1987), 664 s.
Google Scholar
[17]
G. Sokrates, Infrared nad Raman Characteristic Group Fraquencies: Tables and Charts, WILEY (2001), 3rd Edition, ISBN 0-471-85298-8.
Google Scholar
[18]
N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, WILEY (1994), p.346, ISBN 0-471-85298-8.
Google Scholar