Photopatterning Based on a Chemically Amplified Mechanism Nano-Sheet Films

Article Preview

Abstract:

In the paper, an approach for introducing a photoacid generator (PAG) into Langmuir- Blodgett (LB) films to draw photopatterns is described. The chemically amplified positive-tone resist system used here consisted of two components: a copolymer, poly(iso-pentylmethacrylamide- co-4-t-butyloxylvinylphenylcarbonate) [poly(iPMA-t-BVPC39)] and a photoacid generator (PAG), tri(2,3-dibrompropyl)iso-cyanvrate (TDBPIC). In the two-component system, the acid generated by the photoacid generator (PAG) catalyzes the deprotection reaction of poly(iPMA-t-BVPC39) to re- move the tert-butoxycarbonyl group (t-BOC) in the exposed region during the post exposure baking process, thus rendering the exposure region soluble to alkali aqueous to form a positive tone. Phhot- olithographic properties of the LB films have been evaluated. The patterns can be resolved with a resolution of 1 μm line width by UV irradiation,followed by development with an alkali solution. Quantum yield is determined to be 0.065 and catalytic chain length is also calculated to be 2460. The LB films used above can be used to generate etched gold patterns on a glass substrate using an aqueous iodide, ammonium iodide in alcohol /water,as the etchant. The etch resistance of such LB films is sufficiently good, allowing patterning of a gold film suitable for photomask fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

707-714

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Crivello: Proceedings of the SPE Regional Technical Conference on Photopolymers, Society of Plastics Engineers, November., 1982, p.267.

Google Scholar

[2] H. Ito and C. G. Willson: Technical Papers of SPE Regional Technical Conference on Photopolymers., 1982, p.331.

Google Scholar

[3] F. M. Houlihan, A. Shugard, R. Gooden, E. Reichmanis: Proceedings of SPIE-The International Society for Optical Engineering (1988), 920(Adv. Resist Technol. Process. 5), p.67.

Google Scholar

[4] M. J. O'Brien, J. V. Crivello: Proceedings of SPIE-The International Society for Optical Engineering (1988), 920(Adv. Resist Technol. Process 5), p.42.

Google Scholar

[5] K. B. Blodgett: J. Am. Chem. Soc., 57(1935), p.1007.

Google Scholar

[6] K. B. Blodgett, I. Langmuir: Phys. Rev., 51(1937), p.964.

Google Scholar

[7] S.W. J. Kuan, C.W. Frank: J. Vac. Sci. technol., B6(1988), p.2227.

Google Scholar

[8] T. Yoshimura, N. Asai, H. Shiraishi, and S. Okazak: Jpn. J. Appl. Phys., 33(1994), L970.

Google Scholar

[9] T. Miyashita, Y. Mizuta, and M. Matsuda: Br. Polym., 22(1990), p.327.

Google Scholar

[10] T. Miyashita, H. Yoshida, M. Matsuda: Thin Solid Films, L11(1987), p.115.

Google Scholar

[11] X. D. Li, A. Aoki, T. Miyashita: Macromolecules., 30(1997), p.2194.

Google Scholar

[12] A. Aoki, M. Nakaya, T. Miyashita: Chem. Lett. 25(1996), p.667.

Google Scholar

[13] Y.Z. Guo, F. Feng, T. Miyashita: Chem. Lett., 1998, p.1269.

Google Scholar

[14] Y.Z. Guo, F. Feng, T. Miyashita: Macromolecules, 32(1999), p.1115.

Google Scholar

[15] T.S. Li, M. Mitsuishi, T. Miyashita: Chem. Lett., 29(2000), p.608.

Google Scholar

[16] T.S. Li, M. Mitsuishi, T. Miyashita: Thin Solid Films., 389 (2001), p.267.

Google Scholar

[17] T.S. Li, M. Mitsuishi, T. Miyashita: Bull. Chem. Soc. Jpn., 74(2001), p.1757.

Google Scholar

[18] T.S. Li, M. Mitsuishi, T. Miyashita: Adv. Tech. of Mat. and Mat. Proc. J., 7(2)(2005), p.209.

Google Scholar

[19] T. S. Li, M. Mitsuyishi and T. Miyashita: CHEM. RES. CHINESE U. 22(4) (2006), p.543.

Google Scholar

[20] A. Bruns, H. Luethje, F. A. Vollenbroek, E. J. Spiertz: Microelectronic Engineering., 6(1-4) (1987), p.467.

Google Scholar

[21] American Institute of Physics Handbook; D. E. Gray, Ed., Mc Graw Hill: New York, 6(1972), p.147.

Google Scholar

[22] G. L. Jr. Gaines: Anal. Chem., 48(1976), p.450.

Google Scholar