[1]
Meng-Fan, C., et al., A Differential Data-Aware Power-Supplied (D2AP) 8T SRAM Cell With Expanded Write/Read Stabilities for Lower VDDmin Applications. Solid-State Circuits, IEEE Journal of, 2010. 45(6): pp.1234-1245.
DOI: 10.1109/jssc.2010.2048496
Google Scholar
[2]
Daeyeon, K., et al. Variation-aware static and dynamic writability analysis for voltage-scaled bit-interleaved 8-T SRAMs. in Low Power Electronics and Design (ISLPED) 2011 International Symposium on. 2011.
DOI: 10.1109/islped.2011.5993627
Google Scholar
[3]
Chandra, V. and R. Aitken. Impact of voltage scaling on nanoscale SRAM reliability. in Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09. 2009.
DOI: 10.1109/date.2009.5090694
Google Scholar
[4]
Ik Joon, C., et al., A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS. Solid-State Circuits, IEEE Journal of, 2009. 44(2): pp.650-658.
DOI: 10.1109/jssc.2008.2011972
Google Scholar
[5]
Zhang, K., et al. A 3-GHz 70MB SRAM in 65nm CMOS technology with integrated column-based dynamic power supply. in Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International. 2005.
DOI: 10.1109/isscc.2005.1494075
Google Scholar
[6]
Joshi, R., et al. 6.6+ GHz Low Vmin, read and half select disturb-free 1.2 Mb SRAM. in VLSI Circuits, 2007 IEEE Symposium on. 2007.
DOI: 10.1109/vlsic.2007.4342738
Google Scholar
[7]
Jangwoo, K., et al. Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding. in Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International Symposium on. 2007.
DOI: 10.1109/micro.2007.19
Google Scholar
[8]
Honda, K., et al. Elimination of half select disturb in 8T-SRAM by local injected electron asymmetric pass gate transistor. in Custom Integrated Circuits Conference (CICC), 2010 IEEE. 2010.
DOI: 10.1109/cicc.2010.5617440
Google Scholar
[9]
Chandra, V., C. Pietrzyk, and R. Aitken. On the efficacy of write-assist techniques in low voltage nanoscale SRAMs. in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010. 2010.
DOI: 10.1109/date.2010.5457179
Google Scholar
[10]
Yoshimoto, S., et al. Multiple-bit-upset and single-bit-upset resilient 8T SRAM bitcell layout with divided wordline structure. in On-Line Testing Symposium (IOLTS), 2011 IEEE 17th International. 2011.
DOI: 10.1109/iolts.2011.5993829
Google Scholar
[11]
Morita, Y., et al. An Area-Conscious Low-Voltage-Oriented 8T-SRAM Design under DVS Environment. in VLSI Circuits, 2007 IEEE Symposium on. 2007.
DOI: 10.1109/vlsic.2007.4342741
Google Scholar
[12]
Yabuuchi, M., et al. A 45nm 0.6V cross-point 8T SRAM with negative biased read/write assist. in VLSI Circuits, 2009 Symposium on. 2009.
Google Scholar
[13]
Ramadurai, V., R. Joshi, and R. Kanj. A Disturb Decoupled Column Select 8T SRAM Cell. in Custom Integrated Circuits Conference, 2007. CICC '07. IEEE. 2007.
DOI: 10.1109/cicc.2007.4405674
Google Scholar
[14]
Joshi, R.V., R. Kanj, and V. Ramadurai, A Novel Column-Decoupled 8T Cell for Low-Power Differential and Domino-Based SRAM Design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2011. 19(5): pp.869-882.
DOI: 10.1109/tvlsi.2010.2042086
Google Scholar
[15]
Tawfik, S.A. and V. Kursun. Low power and robust 7T dual-Vt SRAM circuit. in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on. 2008.
DOI: 10.1109/iscas.2008.4541702
Google Scholar