[1]
D. G. Caldwell, A. Razak and M. J. Goodwin, Braided Pneumatic Muscle Actuators, Proceedings of the IFAC Conference on Intelligent Autonomous Vehicles, (1993)Southampton.
DOI: 10.1016/s1474-6670(17)49354-2
Google Scholar
[2]
Keith E. Gordona, Gregory S. Sawicki, Daniel P. Ferris. Journal of Biomechanics. Vol. 39 (2006) , p.1832.
Google Scholar
[3]
Mika Iltanen, Asko Ellman, Joonas Laitinen. Wearable haptic device for an IPT system based on pneumatic muscles. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, (2007).
DOI: 10.1115/detc2007-34750
Google Scholar
[4]
Bram Vanderborght, Björn Verrelst, Ronald Van Ham, Michaël Van Damme, Pieter Beyl and Dirk Lefeber. Torque and compliance control of the pneumatic artificial muscles in the biped Lucy,. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, (2006).
DOI: 10.1109/robot.2006.1641814
Google Scholar
[5]
F. Daerden and D. Lefeber. European Journal of Mechanical and Environmental Engineering. Vol. 47 (2002) , p.10.
Google Scholar
[6]
Darwin G. Caldwell, Gustavo A. Medrano-Cerda, and Mike Goodwin. Control Systems. Vol. 15 (1995), p.40.
Google Scholar
[7]
Zang Kejiang, Ma Yan, Sun Ning, Li Xiuchen, Zhang Lan. Experimental Research of the Influence of Constraint for Pneumatic Artificial Muscle Characteristic. 2011 International Conference on Fluid Power and Mechatronics (FPM), (2011).
DOI: 10.1109/fpm.2011.6045744
Google Scholar
[8]
Tri Vo-Minh, Tegoeh Tjahjowidodo, Herman Ramon, and Hendrik Van Brussel. A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model. IEEE/ASME TRANSACTIONS ON MECHATRONICS, (2011)Feb.
DOI: 10.1109/tmech.2009.2038373
Google Scholar
[9]
Michele Focchi, Emanuele Guglielmino, Claudio Semini, Alberto Parmiggiani, Nikos Tsagarakis, Bram Vanderborght and Darwin G. Caldwell. Water/Air performance analysis of a fluidic muscle. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2010).
DOI: 10.1109/iros.2010.5650432
Google Scholar
[10]
Frank Daerden, Dirk Lefeber. International Journal of Fluid Power. Vol. 2 ( 2001) , p.41.
Google Scholar
[11]
Situm, Z., Herceg, S. Design and Control of a Manipulator Arm Driven by Pneumatic Muscle Actuators. 2008 16th Mediterranean Conference on Control and Automation, (2008)June25-27; Ajaccio, France.
DOI: 10.1109/med.2008.4602136
Google Scholar
[12]
N. Tsagarakis and Darwin G. Caldwell. Improved Modelling and Assessment of pneumatic Muscle Actuators. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, (2000)April24-28; San Francisco, CA , USA.
DOI: 10.1109/robot.2000.845299
Google Scholar
[13]
Glenn K. Klute and Blake Hannaford. J. Dyn. Sys., Meas., Control. Vol. 122 (2000) , p.386.
Google Scholar
[14]
Ching-Ping Chou and Blake Hannaford. Static and dynamic characteristics of McKibben pneumatic artificial muscles. 1994 IEEE International Conference on Robotics and Automation, (1994)May8-13; San Diego, CA , USA.
DOI: 10.1109/robot.1994.350977
Google Scholar
[15]
TOORU KITAGAWA, MICHIO ISHITOBI, KAZUYUKI YABUKI. Journal of Polymer Science: Part B: Polymer Physics. Vol. 38 (2000), p.1605.
Google Scholar
[16]
Krzysztof Koziol, Juan Vilatela, Anna Moisala, Marcelo Motta, Philip Cunniff, Michael Sennett, Alan Windle. Science. Vol. 318 (2007) , p.1892.
DOI: 10.1126/science.1147635
Google Scholar
[17]
Satish Kumar, Thuy D. Dang, Fred E. Arnold, Arup R. Bhattacharyya, Byung G. Min, Xiefei Zhang, Richard A. Vaia, Cheol Park,W. Wade Adams, Robert H. Hauge, Richard E. Smalley, Sivarajan Ramesh and Peter A. Willis. Macromolecules. Vol. 35 (2002).
DOI: 10.1021/ma0205055
Google Scholar