[1]
U.S. Environmental Protection Agency, Municipal Solid Waste in the United States: 2010 Facts and Figures. Washington, DC. (2011).
Google Scholar
[2]
E. Soury, A.H. Behravesh, E. Rouhani Esfahani, and A. Zolfaghari, Design, optimization and manufacturing of wood-plastic composite pallet, Mater. Design, vol. 30, 2009, pp.4183-4191.
DOI: 10.1016/j.matdes.2009.04.035
Google Scholar
[3]
R.M. Rowell, Advances and challenges of wood polymer composites, In Proceedings of the 8th Pacific Rim Bio-based Composites Symposium Advances and Challenges in Biocomposites, 2006, pp.2-11.
Google Scholar
[4]
P.A.N. Dias, J.A.C. Alves, D.P. Fagg, M.S. Reis, and M.H. Gil, Development of semitransparent wood-polymer composites, J. Vinyl Addit. Techn., vol. 18, 2012, pp.95-104.
DOI: 10.1002/vnl.20295
Google Scholar
[5]
M. Fornasieri, J.W. Alves, E.C. Muniz, A. Ruvolo-Filho, H. Otaguro, A.F. Rubira et al. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet, Compos. Part A-Appl. S. Manu., vol. 42, 2011, pp.189-195.
DOI: 10.1016/j.compositesa.2010.11.004
Google Scholar
[6]
A. Ashori, Wood-plastic composites as promising green-composites for automotive industries, Bioresource Technol., vol. 99, 2008, pp.4661-4667.
DOI: 10.1016/j.biortech.2007.09.043
Google Scholar
[7]
C. Clemons, Wood-plastic Composites in the United States: The interfacing of two Industries, Forest Prod. J., vol. 52, 2002, pp.8-10.
Google Scholar
[8]
G. Yu, Y. Hu, and J. Gu, Relativity analysis between dynamic and static modulus of elasticity on different thickness wood-plastic structural plates, Appl. Mech. Mater., vol. 121-126, 2012, pp.4254-4258.
DOI: 10.4028/www.scientific.net/amm.121-126.4254
Google Scholar
[9]
H.S. Yang, H.J. Kim, H.J. Park, B.J. Lee, and T.S. Hwang, Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin biocomposites, Compos. Struct., vol. 72, 2006, pp.429-437.
DOI: 10.1016/j.compstruct.2005.01.013
Google Scholar
[10]
M. Karas, and L. Muszyński, Sustainable bio-composites for highway infrastructure: feasibility of material substitution in existing products, BioResources, vol. 6, 2011, pp.3915-3932.
Google Scholar
[11]
S.K. Yeh, and R.K. Gupta, Improved wood-plastic composites through better processing, Compos. Part A-Appl. S. Manu., vol. 39, 2008, pp.1694-1699.
DOI: 10.1016/j.compositesa.2008.07.013
Google Scholar
[12]
K.A. Crookstona, T.M. Youngb, and F.M. Guessc, Statistical reliability analyses of two wood plastic composite extrusion processes, Reliab. Eng. Syst. Safe., vol. 96, 2011, pp.172-177.
Google Scholar
[13]
E. Shakouri, A.H. Behravesh, A. Zolfaghari, and M. Golzar, Effects of processing method and fiber size on the structure and properties of wood–plastic composites, J. Thermoplast. Compos. Mater., vol. 40, January 2009, pp.80-85.
Google Scholar
[14]
K. Wllezynski, SSEM: a computer model for a polymer single-screw extrusion, J. Mater. Process. Technol., vol. 109, 2001, pp.308-313.
Google Scholar
[15]
F.H. Zhu, Extrusion theory and application, China Light Industry Press, Beijing, 2001, pp.41-48.
Google Scholar
[16]
S. Jiang, and F. Zhu, Numerical simulation and software for 7-zone model for the whole screw of single screw extruder, China Plastics, vol. 17, 2003, pp.100-105.
Google Scholar
[17]
Y. Xing, F. Zhu, and S. Jiang, Numerical simulation for solid conveying section during single screw extrusion, China Plastics, vol. 18, 2004, pp.83-87.
Google Scholar
[18]
Y. Bereaux, Y.J. Charmeaub, and M. Moguedet, A simple model of throughput and pressure development for single screw, J. Mater. Process. Technol., vol. 209, 2009, pp.611-618.
Google Scholar
[19]
M. McAfee, and S. Thompson, A novel approach to dynamic modelling of polymer extrusion for improved process control, Proc. Int. Mech. Eng., Part I, J. Syst. Control, vol. 221, 2007, pp.617-628.
DOI: 10.1243/09596518jsce357
Google Scholar
[20]
M.H. Iqbal, U. Sundararaj, and S.L. Shah, New approach to develop dynamic gray box model for a plasticating twin-screw extruder, Ind. Eng. Chem. Res., Vol. 49, 2010, pp.648-657.
DOI: 10.1021/ie900190z
Google Scholar
[21]
M. Dressler, and B.J. Edwards, A method for calculating rheological and morphological properties of constant-volume polymer blend models in inhomogeneous shear fields, J. Non-Newtonian Fluid Mech., vol. 130, 2005, pp.77-95.
DOI: 10.1016/j.jnnfm.2005.08.003
Google Scholar
[22]
A. Braun, M. Dressler, and E.J. Windhab, Extrusion flow of complex viscoelastic polymer blend model, J. Non-Newt. Fluid Mech., vol. 149, 2008, pp.93-103.
DOI: 10.1016/j.jnnfm.2007.02.015
Google Scholar
[23]
M.H.R. Ghoreishy, M. Razavi-Nouri, and G. Naderi, Finite element analysis of flow of thermoplastic elastomer melt through axisymmetric die with slip boundary condition, Plast. Rubber Compos. Process. Appl., 29, 2000, pp.224-228.
DOI: 10.1179/146580100101540996
Google Scholar
[24]
M.H.R. Ghoreishy, M. Razavi-Nouri, and G. Naderi, Finite element analysis of a thermoplastic elastomer melt flow in the metering region of a single screw extruder, Comput Mater Sci, 34, 2005, pp.389-396.
DOI: 10.1016/j.commatsci.2005.01.011
Google Scholar
[25]
H. Sobhani, M. Razavi-Nouri, and M.H.R. Ghoreishy, Quasi-steady State Finite Element Modelling of Polymer Melt Flow in an Intermeshing Co-rotating Twin Screw Extruder, Iranian Polymer Journal 19 (2), 2010, pp.143-154.
Google Scholar
[26]
A.R. Sanadi, D.F. Caulfield, R.E. Jacobson, and R.M. Rowell, Renewable agricultural fibres as reinforcing fillers in plastics: mechanical properties of kenaf fibre–polypropylene composites, Ind. Eng. Chem. Res., vol. 34, 1995, pp.1889-1896.
DOI: 10.1021/ie00044a041
Google Scholar
[27]
A.R. Sanadi, R.M. Rowell, and D.F. Caulfield, Agro-based fiber/Polymer composites, blends and alloys, Polym. News., vol. 21, 1996, pp.7-17.
Google Scholar
[28]
Q. Yuan, D. Wu, J. Gotama, and S. Bateman, Wood Fiber Reinforced Polyethylene and Polypropylene Composites with High Modulus and Impact Strength, J. Thermoplast. Compos. Mater., vol. 21, 2008, pp.195-208.
DOI: 10.1177/0892705708089472
Google Scholar
[29]
H. Li, S. Law, and M. Sain, Process rheology and mechanical property correlation ship of wood flour-polypropylene composites, J. Reinf. Plast. Comp., vol. 23, 2004, pp.1153-1158.
DOI: 10.1177/0731684404035416
Google Scholar
[30]
J.Z. Lu, Q. Wu, and I. Negulescu, Wood-fiber/high-density-polyethylene composites: Coupling agent performance, J. Appl. Polym. Sci., vol. 96, 2005, pp.93-102.
DOI: 10.1002/app.21410
Google Scholar
[31]
V. Hristov, and J. Vlachopoulos, Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites, Polym. Comp., vol. 29, 2008, pp.831-839.
DOI: 10.1002/pc.20455
Google Scholar
[32]
J.L. White, and H. Potente, Screw Extrusion: Science and Technology, Hanser Verlag, Munich, 2003, pp.67-77.
Google Scholar
[33]
C. Rauwendaal, Polymer Extrusion, 4th Ed, Hanser Gardner, Munich, 2001, pp.565-569.
Google Scholar
[34]
N. Petchwattana, S. Covavisaruch, and S. Chanakul, Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene, J. Polym. Res., vol. 19, 2012, pp.9921-9929.
DOI: 10.1007/s10965-012-9921-6
Google Scholar
[35]
J.K. Kim, and K. Pal, Process and machinery used for WPC, Eng. Mater., vol. 32, 2011, pp.59-75.
Google Scholar