Effects of Surface Treatment and Annealing on Properties of InN Layers Grown Using Metal Organic Chemical Vapor Deposition

Article Preview

Abstract:

We report the effects surface treatment and annealing had on the properties of InN layers grown using metal organic chemical vapor deposition (MOCVD). The number of defects due to N vacancies decreased significantly with increasing annealing temperature. However, when the annealing temperature reached 700°C, the crystalline grain became larger on the film surfaces. Annealing at an appropriate temperature improved the crystalline quality and the electrical properties of the InN films. However, when the annealing temperature was too high, InN oxidized and even dissociated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-196

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.J. Chang, C.F. Shen, W.S. Chen, T.K. Ko, C.T. Kuo, K.H. Yu, S.C. Shei and Y.Z. Chiou: Electrochem. Sol. St. Lett. Vol. 10 (2007), p. H175

Google Scholar

[2] C.-K Wang: The Study of Nitride-based Optoelectronic and Microwave Devices (doctoral dissertation, National Cheng Kung University, Taiwan, 2005)

Google Scholar

[3] Y.Z. Chiou, S.J. Chang and Y.K. Su: IEEE Trans. Electron. Dev. Vol. 3 (2003), p.1

Google Scholar

[4] F. Sacconi, A. Di Carlo, P. Lugli and H. Morkoç: IEEE Trans. Electron. Dev. Vol. 48 (2001), p.450

Google Scholar

[5] A. Khan, A. Bhattarai, J.N. Kuznia and D.T. Olson: Appl. Phys. Lett. Vol. 63 (1993), p.1214

Google Scholar

[6] F. Wu, B.P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars and U.K. Mishra: Appl. Phys. Lett. Vol. 69 (1996), p.1438

Google Scholar

[7] H. Lu, W.J. Schaff and L.F. Eastman: J. Appl. Phys. Vol. 96 (2004), p.3577

Google Scholar

[8] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki and Y. Nanishi: Phys. Stat. Sol. (c) Vol. 7 (2003), p. (2031)

DOI: 10.1002/pssc.200303489

Google Scholar

[9] C.L. Wu, C.-H. Shen, H.Y. Chena, S.-J. Tsai, H.W. Lin, H.M. Lee, S. Gwo, T.-F. Chuang, H.-S. Chang and T.M. Hsu: J. Cryst. Gr. Vol. 288 (2006), p.247

Google Scholar

[10] W.-H. Lan, K.-C. Huang and K.F. Huang: Electron. Lett. 6th Ed. Vol. 42 (2006), p.14

Google Scholar

[11] C.-F. Chen, C.-L. Wu and S. Gwo: Appl. Phys. Lett. Vol. 89 (2006), p.252109

Google Scholar

[12] C.-T. Lee, Y.-J. Lin and D.-S. Liu: Appl. Phys. Lett. Vol. 79 (2001), p.2573

Google Scholar

[13] L. Cao, Z.L. Xie, B. Liu, X.Q. Xiu, R. Zhang and Y.D. Zheng: J. Vac. Sci. Technol. B. Vol. 25 (2007), p.199

Google Scholar

[14] A.G. Bhuiyan, A. Hashimoto and A. Yamamoto: J. Appl. Phys. Vol. 94 (2003), p.2779

Google Scholar

[15] J.C. Lin, Y.K. Su, S.J. Chang, W.H. Lan, W.R. Chen, Y.C. Cheng, W.J. Lin, Y.C. Tzeng, H.Y. Shin and C.M. Chang: Opt. Mater. Vol. 30 (2007), p.517

Google Scholar