[1]
Li Lu Yin, Wang tiejun. The extended finite method and its appication[J]. Advance in mechanics, 2005, 35(1): 5-20, In Chinese.
Google Scholar
[2]
Chen Weizhong, Chen Peishuai, Hui Wang. The dynamic simulation technology of crack propagation[J]. Rock and soil mechanics, 2011, 32(Supp 2): 573-579, In Chinese.
Google Scholar
[3]
Cai Yongchang, Hehua Zhu. Simulation of crack growth by the MSLSmehtod [J]. engineering mechanics, 2010, 27(7): 21-26, In Chinese.
Google Scholar
[4]
Lou Luliang, Chen Pan, Nie Lei. Meshless method for numerical simulation of crack propagation [J]. Journal of aeronautical materials, 2001, 3: 51-56, In Chinese.
Google Scholar
[5]
Zhang Qing, Liu Kuan, Xia Xiaozhou. Generalized extended finite element method and its application in crack growth analysis[J]. Chinese journal of computational mechanics, 2012, 29(3): 427-432, In Chinese.
Google Scholar
[6]
Xu Jie, Zhou xun, Chen wenhua, Li weiguo. Simulation of fatigue crack growth of surface cracked plates by finite element method[J]. Journal of Zhejiang Sci-tech university, 2012, 29(1): 66-69, In Chinese.
Google Scholar
[7]
Melenk J M, Bubska I. The partition of the unity finite element method: basic theory and applications[J]. Computer methods in applied mechanics and engineering, 1996, 139: 289-314.
DOI: 10.1016/s0045-7825(96)01087-0
Google Scholar
[8]
Moes N, DolbowJ, Belytschko T. A finite element method for crack growth without remeshing[J]. International journal for numerical methods in engineering, 1999, 46: 131-150.
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Google Scholar
[9]
E. Giner, N. Sukumar, J. E. Tarancon and F. J. Fuenmayor. An Abaqus implementation of the extended finite element method. Engineering fracture mechanics. 2009 , 76: 347-368.
DOI: 10.1016/j.engfracmech.2008.10.015
Google Scholar
[10]
Ventura G, Belytschko T. Vector level sets for description of propagating cracks in finite elements. Int J Numer Meth Engng 2003 , 58: 1571-1592.
DOI: 10.1002/nme.829
Google Scholar