Hydrothermal Preparation of Flower-Like CuS Superstructure and its Optical Property

Article Preview

Abstract:

The CuS flower-like superstructures were selectively and facilely synthesized by a hydrothermal method at 120 °C. The EDS, SEM, HRTEM and FFT results show that the CuS superstore has a well-defined uniform 3-dimensional flower-like morphology. These superstructures have sizes of about 500 nm and are built from several intersectional nanoplates, which have a mean length of about 500 nm and an average thickness of about 50 nm. Optical absorption spectrum of the CuS superstructure shows it has good absorption in the near-IR region and the band gap is 2.08 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2014-2017

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi, Govind and T. Pal: Environ. Sci. Technol Vol. 44 (2010), p.6313.

Google Scholar

[2] F. Li, W.T. Bi, T. Kong and Q.H. Qin: Cryst. Res. Technol. Vol. 44 (2009), p.729.

Google Scholar

[3] Q.W. Tian, F.R. Jiang, R.J. Zou, Q. Liu, Z.G. Chen, M.F. Zhu, S. P, Yang, J.L. Wang, J.H. Wang and J.Q. Hu: ACS Nano Vol. 5 (2011), p.9761.

Google Scholar

[4] Q.W. Tian, M.H. Tang, Y.G. Sun, R.J. Zou, Z.G. Chen, M.F. Zhu, S.P. Yang, J.L. Wang, J.H. Wang and J.Q. Hu: Adv. Mater Vol. 23 (2011), p.3542.

Google Scholar

[5] Y.B. Li, W. Lu, Q. Huang, M. Huang, C. Li and W. Chen: Nanomedicine Vol. 5 (2010), p.1161.

Google Scholar

[6] M. Zhou, R. Zhang, M. Huang, W. Li, S.L. Song, M.P. Melancon, M. Tian, D. Liang and C. Li: J. Am. Chem. Soc Vol. 132 (2010), p.15351.

Google Scholar

[7] X.Y. Wang, Z. Fang and X. Lin: J. Nanopart. Res Vol. 11 (2009), p.731.

Google Scholar

[8] X.L. Yu, C.B. Cao, H.S. Zhu, Q.S. Li, C.L. Liu, Q.H. Gong: Adv. Funct. Mater. Vol. 8 (2007), p.1897.

Google Scholar

[9] G.Z. Mao, W.F. Dong, D.G. Kurth and H. Möhwald: Nano Lett. Vol. 4 (2004), p.249.

Google Scholar

[10] K.V. Singh, A.A. Martinez-morales, G.T.S. Andavan, K.N. Bozhilov and M. Ozkan: Chem. Mater. Vol. 19 (2007), p.2446.

Google Scholar

[11] P. Roy, K. Mondal and S.K. Srivastava: Cryst. Growth Des. Vol. 8 (2008), p.1530.

Google Scholar

[12] K.J. Wang, G.D. Li, J.X. Li, Q. Wang and J.S. Chen: Cryst. Growth Des. Vol. 7 (2007), p.2265.

Google Scholar

[13] P. Roy and S.K. Srivastava: Cryst. Growth Des. Vol. 6 (2006), p. (1921).

Google Scholar

[14] M. Nagarathinam, K. Saravanan, W.L. Leong, P. Balaya and J.J. Vittal: Cryst. Growth Des Vol. 9 (2009), p.4461.

Google Scholar

[15] Z.B. Zhuang, Q. Peng and Y.D. Li: Chem. Soc. Rev. Vol. 40 (2011), p.5492.

Google Scholar