Symmetric Multiwavelet Frames with General Composite Dilation in Higher Dimensions

Article Preview

Abstract:

Frames play an important role in signal processing, image processing, data compression and sampling theory. In this paper, symmetric multiwavelet frames with general composite dilation and with any symmetric points are constructed from composite dilation multiwavelet frames given. At last, an example is provided to prove the theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2669-2672

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Duffin, A. Schaeffer: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. Vol. 72 (1952), pp.341-366.

DOI: 10.1090/s0002-9947-1952-0047179-6

Google Scholar

[2] I. Daubechies, A. Groddmann, Y. Mayer: Painless nonorthogonal expansions, J. Math. Phys. Vol. 27 (1986), pp.1271-1283.

Google Scholar

[3] P. Casazza, J. Kovacevic, J. Kelner: Equal-norm tight frames with erasures, Adv. Comput. Math. Vol. 18 (2003), pp.387-430.

Google Scholar

[4] V. Goyal, J. Kovacevic, J. Kelner: Quantized frames expansions with erasures. Appl. Comput. Harmon. Anal. Vol. 10 (2001), pp.203-233.

Google Scholar

[5] E. Candes, D. Donoho: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. Roy. Soc. London A Vol. 357 (1999), pp.2495-2509.

Google Scholar

[6] R. Coifman, F. Meyer: Brushlets: A tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal. Vol. 4 (1997), pp.147-187.

DOI: 10.1006/acha.1997.0208

Google Scholar

[7] E. Candes, D. Donoho: New tight frames of curvelets and optimal representations of objects with singularities, Comm. Pure Appl. Math. Vol. 57 (2004), pp.219-266.

DOI: 10.1002/cpa.10116

Google Scholar

[8] K. Guo, D. Labate, W. Lim, G. Weiss, E. Wilson: Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal. Vol. 20 (2006), pp.202-236.

DOI: 10.1016/j.acha.2005.07.002

Google Scholar

[9] B. Han, G. Kutyniok, Z. Shen: Adaptive Multiresolution Analysis Structures and Shearlet Systems, SIAM J. Numer. Anal. Vol. 49 (2011), p.1921-(1946).

DOI: 10.1137/090780912

Google Scholar

[10] G. Easley, D. Labate, W. Lim: Sparse Directional Image Representations using the Discrete Shearlet Transform, Appl. Comput. Harmon. Anal. Vol. 25 (2008), pp.25-46.

DOI: 10.1016/j.acha.2007.09.003

Google Scholar

[11] G. Easley, D. Labate, F. Colonna: Shearlet Based Total Variation for Denoising, IEEE Trans. Image Process. Vol. 18 (2009), pp.260-268.

DOI: 10.1109/tip.2008.2008070

Google Scholar

[12] S. Yi, D. Labate, G. Easley, H. Krim: A Shearlet Approach to Edge Analysis and Detection, IEEE Trans. Image Process. Vol. 18 (2009), pp.929-941.

DOI: 10.1109/tip.2009.2013082

Google Scholar

[13] I. Krishtal, B. Robinson, G. Weiss, E. Wilson: Some simple Haar-type wavelets in higher dimensions, J. Geom. Anal. Vol. 17 (2007), pp.87-96.

DOI: 10.1007/bf02922084

Google Scholar