Adaptive Consensus of High Order Multi-Agent Systems with Unknown Nonlinear Dynamics

Article Preview

Abstract:

In this paper, high order consensus problem of multi-agent systems with non-identical unknown nonlinear dynamics following an unknown and nonlinear leader is investigated in networks with fixed and switching topologies. By parameterizations of unknown nonlinear dynamics of agents in the system, neighbor-based adaptive consensus algorithms are proposed by incorporating consensus errors in addition to relative position feedback. Base on algebraic graph theory, Lyapunov theory, Riccati inequalities and PE condition, analysis of stability and parameter convergence of the proposed algorithm are conducted. Finally, a simulation in switching networks is worked out to illustrate the effectiveness of the theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2654-2658

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lian Z, Deshmukh A. European J. of Operational Research, 2006, 172 (2): 680-695.

Google Scholar

[2] Jadbabaie A, Lin J, Morse A S. IEEE Trans. Auto. Control, 2003, 48 (6): 998-1001.

Google Scholar

[3] Ren W, Beard R W. IEEE Trans. Auto. Control, 2005, 50 (5): 655-661.

Google Scholar

[4] Olfati-Saber R, Murray R. IEEE Trans. Auto. Control, 2004, 49 (9): 1520-1533.

Google Scholar

[5] Lin Z, Francis B, Maggiore M. IEEE Trans. Auto. Control, 2005, 50 (1): 121-127.

Google Scholar

[6] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen and O. Schochet, Novel type of phase transitions of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226-1229.

DOI: 10.1103/physrevlett.75.1226

Google Scholar

[7] W.W. Yu, G. R. Chen and M. Cao. Automatica 46 (2010) 1089-1095.

Google Scholar

[8] W. Ren, K.L. Moore andY.Q. Chen. J. Dyn. Sys. Meas. Contr. 129(5) (2007) 678-688.

Google Scholar

[9] F.C. Jiang, L. Wang and Y. M. Jia, 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 4458-4462.

Google Scholar

[10] F. Xiao and L. Wang, IET Contr. Theory Appl. 1 (2007) 830-837.

Google Scholar

[11] S. Sastry and M. Bodson, Ser. Prentice Hall Advanced Reference Series (Engineering). New Jersey: Prentice-Hall, (1989).

Google Scholar

[12] R. Marino and P. Tomei, Prentice Hall Europe, (1995).

Google Scholar

[13] H. Bai, M. Arcak, and J. T. Wen, Systems Control Letters, vol. 57, pp.602-610, (2008).

Google Scholar

[14] H. Bai, M. Arcak, and J. T. Wen, Automatica, vol. 45, pp.1020-1025, (2009).

Google Scholar

[15] W. Ni and D. Cheng, Systems Control Letters, vol. 59, pp.209-217, (2010).

Google Scholar