[1]
Benedettini F, Rega G. Planar non-linear oscillations of elastic cables under planar excitation. International Journal of Non-linear Mechanics 1987; 22: 497–509.
DOI: 10.1016/0020-7462(87)90039-4
Google Scholar
[2]
Irvine HM. Cable Structures, The MIT Press, Cambridge, MA: (1981).
Google Scholar
[3]
Wang LH, Zhao YY. Nonlinear interactions and chaotic dynamics of suspended cables with th- ree-to-one internal resonances. Int J Solids Struct 2006; 43: 7800-7819.
DOI: 10.1016/j.ijsolstr.2006.04.006
Google Scholar
[4]
Zhao YY, Wang LH. On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance. J Sound and Vib 2006; 294: 1073-1093.
DOI: 10.1016/j.jsv.2006.01.004
Google Scholar
[5]
Wang LH, Zhao YY. Multiple internal resonances and non-planar dynamics of shallow suspen- ded cables to the harmonic excitation. J Sound and Vib 2009; 319: 1-14.
DOI: 10.1016/j.jsv.2008.08.020
Google Scholar
[6]
Wagg, David/ Neild, Simon. Nonlinear Vibration with Control. Springer Verlag, MA: (2010).
Google Scholar
[7]
R.E. Mickens, Quadratic non-linear oscillators, Journal of Sound and Vibration 270 (2004) 427–432.
DOI: 10.1016/s0022-460x(03)00481-4
Google Scholar
[8]
H. Hu, J.H. Tang. A classical iteration procedure valid for certain strongly nonlinear oscillators. re valid for certain strongly nonlinear oscillators. Journal Sound Vibration, 2007, 299: 397–402.
DOI: 10.1016/j.jsv.2006.07.017
Google Scholar
[9]
S.J. Liao. Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton, Chapman and Hall, (2003).
Google Scholar
[10]
Zhao YY, Wang LH, Liu WC, Zhou HB. Direct treatment and discretizations of non-linear d- ynamics of suspended cables. Acta Mechanica Sinica 2005; 37: 329–38 [in Chinese].
Google Scholar
[11]
Mickens, R.E. Iteration method solutions for conservative and limit-cycle x1/3 force oscilla- tors. Journal of Sound and Vibration. 2006, 292: 964–968.
DOI: 10.1016/j.jsv.2005.08.020
Google Scholar
[12]
Rega G, Benedettini F. Planar non-linear oscillations of elastic cables under subharmonic ex- citation. Journal of Sound and Vibration 1989; 132: 367–81.
DOI: 10.1016/0022-460x(89)90631-7
Google Scholar
[13]
Benedettini F, Rega G. Planar non-linear oscillations of elastic cablesunder superharmonic ex- citation. Journal of Sound and Vibration 1989; 132: 353–66.
DOI: 10.1016/0022-460x(89)90630-5
Google Scholar
[14]
Zhao Y, Wang L. On the symmetrical modal interaction of the suspendedcable: Three-to-one internal resonance. Journal of Sound and Vibration2006; 294: 1073–93.
Google Scholar
[15]
Srinil N, Rega G, Chucheepsaul S. Large amplitude three-dimensionalfree vibration of inclined sagged elastic cable. Nonlinear Dynamics 2003; 33: 129–46.
Google Scholar
[16]
H. Hu. A classical perturbation technique that works even when the linear part of restoring for- ce is zero. Journal of Sound and Vibration, 2004, 269: 409–412.
DOI: 10.1016/s0022-460x(03)00653-9
Google Scholar
[17]
R.E. Mickens. Comments on the method of harmonic-balance. Journal of Sound and Vibration, 1984 94 : 456–460.
DOI: 10.1016/s0022-460x(84)80025-5
Google Scholar
[18]
Beléndez A, Hernández A, Beléndez T, Álvarez M L, Gallego S, Ortuño M, Neipp C. Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire. Journal of Sound and Vibration 2007, 302: 1018–1029.
DOI: 10.1016/j.jsv.2006.12.011
Google Scholar
[19]
Mickens R E. Harmonic balance and iteration calculations of periodic solutions to. Journal of Sound and Vibration 2007, 306: 968–972.
DOI: 10.1016/j.jsv.2007.06.010
Google Scholar
[20]
El-Attar M, Ghobarah A, Aziz TS. Non-linear cable response to multiplesupport periodic excitation. Engineering Structures 2000; 22: 1301–12.
DOI: 10.1016/s0141-0296(99)00065-6
Google Scholar
[21]
H. Hu. Solutions of a quadratic nonlinear oscillator: Iteration procedure. Journal of Sound and Vibration 2006; 298: 1159–1165.
DOI: 10.1016/j.jsv.2006.06.005
Google Scholar