Adaptive Coordination Control of Multi-Agent Systems with Switching Topologies and Unknown Nonlinear Dynamics

Article Preview

Abstract:

In this paper, we study the leader-following adaptive consensus problem for multi-agent systems with unknown nonlinear dynamics. The topologies of the networks are switching. A novel adaptive consensus algorithm is proposed by using linear parameterizations of unknown nonlinear dynamics of all agents. By stability analysis and parameter convergence analysis of the proposed algorithm, adaptive consensus can be realized based on neighboring graphs. The stability analysis is based on algebraic graph theory and Lyapunov theory, the PE condition plays a key role in parameter convergence analysis. Example is given to validate the theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1413-1416

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Jadbabaie, J. Lin and S. A. Morse, IEEE Trans. Automat. Control, Vol. 48 (2003), p.988.

Google Scholar

[2] R. Olfati-saber, R. M. Murray, IEEE Trans. Automat. Control, Vol. 49 (2004), p.1520.

Google Scholar

[3] P. Lin and Y. M. Jia, Automatica 45 (2009) 2154-2158.

Google Scholar

[4] A. T. Salehi, A. Jadbabaie, IEEE Trans. Automat. Control, Vol. 53 (2008), p.791.

Google Scholar

[5] Z. H. Guan, C. Meng, R. Q. Liao and D. X. Zhang, Physics Letters A, Vol. 376 (2012), p.387.

Google Scholar

[6] F. Xiao and L. Wang, Control Theory & Applications, IET, Vol. 1 (2007), p.830.

Google Scholar

[7] H. Bai, M. Arcak, and J. T. Wen, Systems & Control Letters, Vol. 57 (2008), p.602.

Google Scholar

[8] H. Bai, M. Arcak, and J. T. Wen, Automatica, Vol. 45 (2009), p.1020.

Google Scholar

[9] A. Das and F. L. Lewis, Automatica, Vol. 46 (2010), p. (2014).

Google Scholar

[10] Z. Hou, L. Cheng and M. Tan, IEEE Trans. Syst., Man, Cybern. B, Vol. 39 (2009), p.636.

Google Scholar

[11] C. Godsil, G. Doyle, Algebraic Graph Theory, Springer, New York, (2001).

Google Scholar

[12] R. Marino and P. Tomei, Nonlinear Control Design-Geometric, Adaptive and Robust. Prentice Hall, Europe, (1995).

Google Scholar