[1]
Cu L, Ou QL, etc. Fractional of hyperchaotic Lorenz system and circuit simulation. Electronic measurement technology. 2010, 33(5): 3-16. (in Chinese).
Google Scholar
[2]
Zhang LG. The state feedback control of fractional order Lorenz system. Information technology. 2008, 8: 40- 42. (in Chinese).
Google Scholar
[3]
Yan Y, Zhang LG . Fractional control algorithm of Lorenz system . Journal of Dynamics and control. 2006, 4(2): 132-135.
Google Scholar
[4]
Yang QG, Zeng CB. Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun Nonlinear Sci Numer Simulat. 2010, 15: 4041–4051.
DOI: 10.1016/j.cnsns.2010.02.005
Google Scholar
[5]
Qiao ZM, Jin YR. A control approach of fractional ordered Lorenz dynamical system. Journal of Anhui University ( Natural Science Edition). 2010, 34(6): 23-27. (in Chinese).
Google Scholar
[6]
Sun KH , Ren J, etc. Chaotic Dynamic Characteristics of Fractional-Order Unified System. Journal of South China University of Technology (Natural Science Edition). 2008, 36(8): 6-10. (in Chinese).
Google Scholar
[7]
Lu J G. Chaotic dynamics of the fractional-order Lü system and its synchronization . Physics Letters A, 2006, 354: 305-311.
DOI: 10.1016/j.physleta.2006.01.068
Google Scholar
[8]
Li C G, Chen G R. Chaos in the fractional order Chen system and its control. Chaos, Solitons and Fractals , 2004, 22: 549-554.
DOI: 10.1016/j.chaos.2004.02.035
Google Scholar
[9]
Zhou P, Zhang NY. Control of fractional-order Rössler chaotic system to approach any desired targets via Feedback control. Journal of Chongqing University of Posts and Telecommunications (Natural Science). 2007, 19(6): 756-758. (in Chinese).
DOI: 10.1142/9789812799524_0053
Google Scholar
[10]
Li CG, Chen GR. Chaos and hyperchaos in the fractional-order Rŏossler equations. Physics A. 2004, 341: 55-61.
Google Scholar
[11]
Donato C, Giuseppe G. Observer-based synchronization for a class of fractional chaotic systems via a scalar Signal: results involving the exact solution of the error dynam. International Journal of Bifurcation and Chaos. 2011, 21(3) : 955-962.
DOI: 10.1142/s021812741102874x
Google Scholar
[12]
Wu CL, Ma SJ, etc. chaos in stochastic Duffing systems and its control by delayed feedback. Acta Physica sinica. 2005, 55(12): 6253-6260. (in Chinese).
Google Scholar
[13]
Zhang Y, Xu W, etc. Stochastic chaos and its control in a stochastic Double-Well Duffing-van der Pol system with Bounded Random Parameter. The 12 th national nonlinear vibration and the ninth nonlinear dynamics and movement stability academic conference proceedings. 2009. (in Chinese).
Google Scholar
[14]
Ma SJ, Zhao TT. Chaos Controlling Oscillating Circuit with Random Parameter. Journal of Wuhan University of technology. 2011, 33(5): 1-5.
Google Scholar
[15]
Vedat Ç, Yakup D. Effects on the chaotic system of fractional order PIα Controller. Nonlinear Dyn. 2010, 59 : 143-15.
Google Scholar
[16]
Hoda S, Hassan S, etc. On the control of chaos via fractional delayed feedback method. Computers and Mathematics with Applications. 2011, 62: 1482–1491.
DOI: 10.1016/j.camwa.2011.05.002
Google Scholar
[17]
Liu BZ, Peng JH. Nonlinear dynamics. Beijing: Higher education press. 2006: 44-46. (in Chinese).
Google Scholar