Reduction of Cogging Torque in Permanent Magnet Synchronous Motor Using the Taguchi Method

Article Preview

Abstract:

This paper presents the use of Taguchi methods in optimizing a PMSM for reducing peak value of cogging torque. The analytical model of cogging torque is derived by the energe method. The Taguchi optimization method was used to generate the experiment samples, which were calculated in 2-D and 3-D FEA. Three different parameters of PMSM, such as skew ratio, pole embrace and stator slot width were optimized. ANOVA was used to analysis the effect of different factors in Taguchi method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. L. Ree, N. Boules, Torque production in permanent magnet synchronous motors[J]. IEEE Trans. Ind. Appl., 1989, 25(1): 107-112.

DOI: 10.1109/28.18879

Google Scholar

[2] Miroslav, Markovic, Yves Perriard. Optimization design of a segmented Halbach permanent-magnet motor using an analytical model[J]. IEEE Trans. on Magnetics, 2009, 45(7): 2955-2960.

DOI: 10.1109/tmag.2009.2015571

Google Scholar

[3] Z. Q. Zhu, D. Howe. Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors[J], IEEE Trans. Magn., 1992, 28(2): 1371-1374.

DOI: 10.1109/20.123947

Google Scholar

[4] Z. Q. Zhu, D. Howe, Influence of design parameters on cogging torque in permanent magnet machines[J]. IEEE Trans. On Ener. Conv., 2000, 15(4): 407-412.

DOI: 10.1109/60.900501

Google Scholar

[5] S. M. Hwang, J. B. Eom, et. al, Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors[J]. IEEE Trans. On Magn., 2001, 37(4): 2806-2809.

DOI: 10.1109/20.951313

Google Scholar

[6] Rakib Islam, Iqbal Husain, et al. Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction[J]. IEEE Trans. Magn., 2009, 45(1): 152-160.

DOI: 10.1109/tia.2008.2009653

Google Scholar

[7] N. Bianchi, S. Bolognani, Design techniques for reducing the cogging torque in surface-mounted pm motors[J]. IEEE Trans. On Ind. Appl., 2002, 38(5): 1259-1265.

DOI: 10.1109/tia.2002.802989

Google Scholar

[8] Ramdane Lateb, Noureddine Takorabet, et al. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors[J]. IEEE Trans. Magn., 2006, 42(3): 442-445.

DOI: 10.1109/tmag.2005.862756

Google Scholar

[9] C. Breton, J. Bartolome, et al. Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors[J]. IEEE Trans. Magn., 2000, 36(5): 3819-3823.

DOI: 10.1109/20.908386

Google Scholar

[10] Chang Seop Koh, Jin-Soo Seol. New cogging-torque reduction method for brushless permanent-magnet motors[J], IEEE Trans. Magn., 2003, 39(6): 3503-3506.

DOI: 10.1109/tmag.2003.819473

Google Scholar

[11] D. Zarko, D. Ban, T. A. Lipo, Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance[J]. IEEE Trans. Magn., 2006, 42(7): 1828-1833.

DOI: 10.1109/tmag.2006.874594

Google Scholar

[12] Li Zhu, S. Z. Jiang, Z. Q. Zhu, et al. Analytical methods for minimizing cogging torque in permanent-magnet machines[J], IEEE Trans. Magn., 2009, 45(4): 2023-(2031).

DOI: 10.1109/tmag.2008.2011363

Google Scholar

[13] C. C. Hwang, P. L. Li, et. al, Optimization for Reduction of Torque Ripple in an Axial Flux Permanent Magnet Machine[J]. IEEE Trans. On Magn., 2009, 45(3): 1760-1763.

DOI: 10.1109/tmag.2009.2012811

Google Scholar

[14] C. C. Hwang, P. L. Li, et. al, Optimal design of an SPM motor using genetic algorithms and taguchi method[J]. IEEE Trans. On Magn., 2008, 44(11): 4325-4328.

DOI: 10.1109/tmag.2008.2001526

Google Scholar

[15] A. M. Omekanda, Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods[J]. IEEE Trans. On Ind. Appl., 2006, 42(2): 473-478.

DOI: 10.1109/tia.2006.870031

Google Scholar