[1]
N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2003, ISBN 0849313678.
Google Scholar
[2]
O. W. Schotborgh, et al. Dimensionless design graphs for flexure elements and a comparison between three flexure elements, in: Precision Engineering, 2005, Vol. 29, p.41–47.
DOI: 10.1016/j.precisioneng.2004.04.003
Google Scholar
[3]
K. Y. Yong, T-F. Lu, D.C. Handley, Review of circular flexure hinge design equations and derivation of empirical formulations, Precision Engineering Vol. 32, 2008, ISSN 0141-6359, p.63–70.
DOI: 10.1016/j.precisioneng.2007.05.002
Google Scholar
[4]
L. L. Howell, Compliant Mechanisms, Wiley-IEEE, 2001, ISBN 047138478X, 459 p.
Google Scholar
[5]
T.S. Smith, Flexures: elements of elastic mechanisms, Gordon and Breach Science Publishers, 2000, ISBN 90-5699-261-9, 448 p.
Google Scholar
[6]
Š. Havlík, Improving accuracy of compliant robotic (micro) devices. in: RAAD 2010: proceedings. Editor A. Szakál, Budapest, IEEE, 2010, ISBN 978-1-4244-6884-3, pp.385-389.
Google Scholar
[7]
Š. Havlík, J. Hricko, The RCC mini-gripper for precise assembly. in: Modern Machinery Science Journal, 20th International Workshop on Robotics in Alpe-Adria-Danube Region, Brno Czech republic, 2011, ISSN 1805-0646, pp.128-133.
Google Scholar
[8]
Š. Havlík, Passive compliant mechanisms for robotic (micro) devices. in: 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, 2011, pp.1-7.
Google Scholar
[9]
Š. Havík, Smart mechanisms for robotic devices, in: 21th International Workshop on Robotics in Alpe-Adria-Danube Region, Napoli, Italia, 2012, ISBN 978-88-95430-45-4, pp.216-222.
DOI: 10.1109/raad.2014.7002270
Google Scholar
[10]
Š. Havlík, Analysis and modeling flexible robotic (micro) mechanisms. in: Proceedings of the 11th World Congress in Mechanism and Machine Science. Tianjin, April 1-4, 2004, Vol. 3, PR of China, pp.1390-1395.
Google Scholar
[11]
Š. Havlík, G. Carbone, Design of compliant Robotic Micro-Devices, in: 15th International Workshop on Rotobics in Alpe-Adria-Danube Region, RAAD 2006, June 15 – 17, 2006, Balatonfured, Hungary, ISBN: 963-7154-48-5.
DOI: 10.1109/raad.2010.5524556
Google Scholar
[12]
J, Hricko, Analysis, modeling and optimization of compliant mechanisms design, in: PhD dissertation, FEI STU Bratislava, 2010, (In slovak).
Google Scholar
[13]
Y. K. Yong, T-F. Lu, Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges, Mechanism and Machine Theory, vol. 44 (2009), p.1156–1175.
DOI: 10.1016/j.mechmachtheory.2008.09.005
Google Scholar
[14]
B. -J. Yi, et. al., Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges, IEEE Transactions on robotics and automation, vol. 19, no. 4, august (2003).
DOI: 10.1109/tra.2003.814511
Google Scholar
[15]
P.R. Ouyang, A spatial hybrid motion compliant mechanism: Design and optimization, Mechatronics, vol. 21, (2011), p.479–489.
DOI: 10.1016/j.mechatronics.2010.12.009
Google Scholar
[16]
J. Hricko, R. Harťanský, Š. Havlík, Modeling Compliant Mechanical Joints for Micro-Robotic Devices, in: RAAD 2009: 18th International Workshop on Robotics in Alpe-Adria-Danube Region, Brasov, Romania, Bucuresti: Printech, ISSN 2066-4745.
DOI: 10.1109/raad.2010.5524554
Google Scholar
[17]
J. Hricko, Modelling Compliant Mechanisms – Comparison of Models in MATLAB / SimMechanics vs. FEM, in: 21th International Workshop on Robotics in Alpe-Adria-Danube Region, Napoli, Italia, 2012, ISBN 978-88-95430-45-4, pp.57-62.
DOI: 10.1109/raad.2010.5524554
Google Scholar