Fabrication and Characterization of Cu-Plated Fine Pitch Patterns on Flexible Polyimide

Article Preview

Abstract:

The thin flexible Polyimides (PI) films have desirable properties for use in the electrical and electronics industry because their good thermal stability, high flexibility, low dielectric constants, excellent mechanical strength, low loss tangent, low relative permittivity and electrical insulating properties. In order to determine the process window of the surface metallization of PI, the fine traces with 50 micron pitch (25micron line /space) built on a flexible 50 micron thick PI film using wet fabrication process are reported in this paper. The thick copper (Cu) film was obtained from the Cu plating process using evaporated thin film of Cu as the adhesion layer. The fabricated fanout fine patterns are further investigated using scanning electron microscope (SEM), energy-dispersive spectrometry (EDS) and X-ray spectrometry technologies. The experiment is conducted to study the effect of the process parameters on the Cu film surface properties. The results obtained in this work can be applied to the fabrication of flexible microelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-122

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. S. Han, Z. Y. Tan, K. Sato, and M Shikida, Journal of Micromechanics and Micro-engineering, Vol. 14, No 1, p.200 (2000).

Google Scholar

[2] P. C. Chiang, W. T. Whanga, M. H. Tsaib, and S. C. Wua, Thin Solid Films 447-448, pp.359-364 (2004).

Google Scholar

[3] L. Lia, G. Yana, J. Wua, X. Yua, Q. Guoa, and E. Kang, Applied Surface Science, Vol. 254, No 22, pp.7331-7335, 15 Sep. (2008).

Google Scholar

[4] Y. Kim, J. Keum, J.G. Kim, H. Lim, and C.S. Ha, Advanced Materials for Optics and Electronics, Vol. 10, Iss. 6, pp.273-283 (2000).

Google Scholar

[5] K. L. Mittal, Polyimides. Plenum, New York (1984).

Google Scholar

[6] D. Wilson, H.D. Stenzenberger, and P.M. Hergenrother, Chapman & Hall, New York (1990).

Google Scholar

[7] G.H. Yang, E.T. Kang, K.G. Neoh, Y. Zhang, and K.L. Tan, Colloid and Polymer Science 279, pp.745-753 (2001).

Google Scholar

[8] K. Kordas, S. Leppävuori, A. Uusimäki, F.G. Thomas, L. Nanai, R. Vajtai, K. Bali, and J. Bekesi, Thin Solid Films 384, pp.185-188 (2001).

DOI: 10.1016/s0040-6090(00)01829-0

Google Scholar

[9] K. Akamatsu, S. Ikeda, and H. Nawafune Langmuir 19, pp.10366-10371 (2003).

Google Scholar

[10] M.K. Ghosh, K.L. Mittal (Eds. ), Marcel Dekker, New York (1996).

Google Scholar

[11] S. P. Murarka, I.V. Verner, R. J. Gutmann, Wiley, New York (2000).

Google Scholar

[12] R. Rosenberg, D. C. Edelstein, C. K. Hu, K. P. Rodbell, Annual Review of Materials Research 30, pp.229-262 (2000).

Google Scholar

[13] J.H. Glezen, H.A. Naseem, R.K. Ulricht, L.W. Schaper, and W.D. Brown, IEEE International Conference on Multichip Modules (1997).

DOI: 10.1109/icmcm.1997.581178

Google Scholar

[14] S.C. Chang, J.M. Shied, and M.S. Feng, Journal of Vacuum Science and Technology. B 19(3), May/June (2001).

Google Scholar