[1]
Skinner, M.W., et al., CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol, 3(3): pp.332-50. (2002).
DOI: 10.1007/s101620020013
Google Scholar
[2]
Todd, C.A., F. Naghdy, and M.J. Svehla, Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Trans Biomed Eng, 54(7): pp.1247-55. (2007).
DOI: 10.1109/tbme.2007.891937
Google Scholar
[3]
Rebscher, S.J., et al., Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans Biomed Eng, 46(3): pp.340-52. (1999).
DOI: 10.1109/10.748987
Google Scholar
[4]
Chen, B.K., G.M. Clark, and R. Jones, Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array - a two-dimensional application of finite element analysis. Med Eng Phys, 25(2): pp.141-7. (2003).
DOI: 10.1016/s1350-4533(02)00150-9
Google Scholar
[5]
Adunka, O., et al., Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope, 114(7): pp.1237-41. (2004).
DOI: 10.1097/00005537-200407000-00018
Google Scholar
[6]
Xu, J., et al., Micro-focus fluoroscopy - a great tool for electrode development. Cochlear Implants Int, 10 Suppl 1: pp.115-9. (2009).
DOI: 10.1179/cim.2009.10.supplement-1.115
Google Scholar
[7]
Yoo, S.K., et al., Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng, 47(10): pp.1392-402. (2000).
DOI: 10.1109/10.871413
Google Scholar
[8]
Vogel, U., New approach for 3D imaging and geometry modeling of the human inner ear. ORL J Otorhinolaryngol Relat Spec, 61(5): pp.259-67. (1999).
DOI: 10.1159/000027683
Google Scholar
[9]
Kolston, P.J. and J.F. Ashmore, Finite element micromechanical modeling of the cochlea in three dimensions. J Acoust Soc Am, 99(1): pp.455-67. (1996).
DOI: 10.1121/1.414557
Google Scholar
[10]
Manoussaki, D., et al., The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci U S A, 105(16): pp.6162-6. (2008).
DOI: 10.1073/pnas.0710037105
Google Scholar
[11]
Purcell, D.D., et al., Two temporal bone computed tomography measurements increase recognition of malformations and predict sensorineural hearing loss. Laryngoscope, 116(8): pp.1439-46. (2006).
DOI: 10.1097/01.mlg.0000229826.96593.13
Google Scholar
[12]
Tomandl, B.F., et al., Virtual labyrinthoscopy: visualization of the inner ear with interactive direct volume rendering. Radiographics, 20(2): pp.547-58. (2000).
DOI: 10.1148/radiographics.20.2.g00mc11547
Google Scholar
[13]
Kha, H.N., B.K. Chen, and G.M. Clark, 3D finite element analyses of insertion of the Nucleus standard straight and the Contour electrode arrays into the human cochlea. J Biomech, 40(12): pp.2796-805. (2007).
DOI: 10.1016/j.jbiomech.2007.01.013
Google Scholar
[14]
Chen, J.L., et al., Utility of temporal bone computed tomographic measurements in the evaluation of inner ear malformations. Arch Otolaryngol Head Neck Surg, 134(1): pp.50-6. (2008).
DOI: 10.1001/archoto.2007.4
Google Scholar
[15]
Yost, W.A., Fundamentals of Hearing: An Introduction, 4th Edition Vol. The inner ear and its mechanical response. Academic Press. 85. (2000).
Google Scholar