[1]
S. Hamiti, IEEE 802. 16m system description document. Editor, IEEE 802. 16 Broadband Wireless Access Working Group, IEEE 802. 16m-08_003r8, (2009).
Google Scholar
[2]
R. Srinivasan, IEEE 802. 16m evaluation methodology document (EMD). Editor, IEEE 802. 16 Broadband Wireless Access Working Group, IEEE 802. 16m-08_004r4, (2009).
Google Scholar
[3]
M. Cudak, IEEE 802. 16m system requirements. Editor, IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_008, (2008).
Google Scholar
[4]
M. Gudmundson, Correlation model for shadow fading in mobile radio systems. Electronics Letters, (1991).
DOI: 10.1049/el:19911328
Google Scholar
[5]
S. Kim, K. Lim, S. Chang, S. Cho, J. Kim, C. Yoon , Hybrid ARQ operation for IEEE 802. 16m. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_454r1. (2008).
Google Scholar
[6]
A. Davydov, A. Maltsev, Hybrid ARQ for synchronous allocation in distributed subcarrier mode. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_290r1, (2008).
Google Scholar
[7]
C.Y. Chiu, F.C. Ren, R. Li, HARQ process timing and HARQ process number. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_307, (2008).
Google Scholar
[8]
A. Das, F. Khan, A. Sampath, H. j. Su, Adaptive, asynchronous, incremental redundancy with fixed transmission time intervals (TTI) for HSDPA. PIMRC 2002. (2002).
DOI: 10.1109/pimrc.2002.1045194
Google Scholar
[9]
Z. Tao, A. Li, J. Zhang, T. Kuze, Performance improvement for multichannel HARQ protocol in next generation WiMAX system. Proceedings of IEEE Wireless Communications and Networking Conference, WCNC 2008, (2008), p.2009-(2014).
DOI: 10.1109/wcnc.2008.357
Google Scholar
[10]
M. S. Akram, Pilot-based channel estimation in OFDM systems. Nokia & Technique University of Denmark (DTU), (2007).
Google Scholar
[11]
DRAFT standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems. IEEE 802. 16 Broadband Wireless Access Working Group, P802. 16Rev2/D8, (2008).
DOI: 10.1109/ieeestd.2009.5062485
Google Scholar
[12]
Qualcomm Europe, Evaluation parameters for positioning studies. 3GPP TSG-RAN WG1 #56, R1-090853, (2009).
Google Scholar
[13]
S. Ahmadi, H. Yin, Proposal for IEEE 802. 16m frame structure. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_082, (2008).
Google Scholar
[14]
M. Venkatachalam, S. Ahmadi , IEEE 802. 16m MAC layer protocols: design principles. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_409r1, (2008).
Google Scholar
[15]
C.Y. Chiu, F.C. Ren, R. Li, W.H. Sheen, HARQ process timing and HARQ process number. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_307, (2008).
Google Scholar
[16]
M. Kone, M.H. Tao, Y.C. Hsiao, R. Li, HARQ with an adaptive N packets transmission per CID. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_315r2, (2008).
Google Scholar
[17]
E. Lee, D. h. Sung, H. Cho, H. Park, Hybrid-ARQ data transmission for sub-frame concatenation. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_414r1, (2008).
Google Scholar
[18]
H.Y. Wei, C.C. Chou, C.Y. Wang, R. Li, ACK and NACK feedback schemes for HARQ operation. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_294r5, (2008).
Google Scholar
[19]
A. Sayenko, H. Martikainen, A. Puchko, Performance comparison of HARQ and ARQ mechanisms in IEEE 802. 16 networks. International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, (2008), pp.411-416.
DOI: 10.1145/1454503.1454572
Google Scholar
[20]
Y. Bourlas, L. Wang, E. Colban, K. Stanwood , NACK based ARQ over HARQ in IEEE 802. 16m. IEEE 802. 16 Broadband Wireless Access Working Group, IEEE C802. 16m-08_1038, (2008).
Google Scholar