Combined Probabilistic and Possibilistic Used to a Build Type-2 Fuzzy Clustering Algorithm Model

Article Preview

Abstract:

In a noise environment probabilistic fuzzy clustering will force the noise into one or more clusters, seriously influencing the main dataset structure. We extend Type-1 membership values to Type-2 by assigning a possibilistic-membership function to each Type-1 membership value. The idea in building the Type-2 fuzzy sets is based simply on the fact that, for the same Type-1 membership value, the secondary membership function should make the larger possibility value greater than the smaller possibility value. This paper presents an efficient combined probabilistic and possibilistic method for building Type-2 fuzzy sets. Utilizing this concept we present a Type-2 FCM (T2FCM) that is an extension of the conventional FCM. The experimental results show that the T2FCM is less susceptible to noise than the Type-1 FCM. The T2FCM can ignore the inlier and outlier interrupt. The clustering results show the robustness of the proposed T2FCM because a reasonable amount of noise data does not affect its clustering performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3060-3069

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, A. C. P. L. F. de Carvalho: IEEE Trans. Syst., Man, Cybern. Vol. 39 (2009), p.133

Google Scholar

[2] J. Bezdek: Pattern Recognition with Fuzzy Objective Function, Plenum Press, New York (1981)

Google Scholar

[3] R. Krishnapuram and J. Keller: IEEE Trans. Fuzzy Sys. Vol. 1 (1993), p.98

Google Scholar

[4] R. Krishnapuram and J. Keller: IEEE Trans. Fuzzy Sys. Vol. 4 (1996), p.385

Google Scholar

[5] N. R. Pal, K. Pal, J. M. Keller and J. C. Bezdek: IEEE Trans. Fuzzy Sys. Vol. 13 (2005), p.517

Google Scholar

[6] L. A. Zadeh: Inform. Sci. Vol. 8 (1975), p.199

Google Scholar

[7] J. Mendel: Inform. Sci. Vol. 177 (2007), p.84

Google Scholar

[8] N. N. Karnik, J. M. Mendel and Q. Liang: IEEE Trans. Fuzzy Sys. Vol. 7 (1999), p.643

Google Scholar

[9] Q. Liang and J. M. Mendel: IEEE Trans. Fuzzy Syst. Vol. 8 (2000), p.535

Google Scholar

[10] J. M. Mendel: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, Upper Saddle River, NJ (2001)

Google Scholar

[11] S. Coupland and R. John: IEEE Trans. Fuzzy Sys. Vol. 15 (2007), p.3

Google Scholar

[12] F. C. H. Rhee and C. Hwang: IEEE Trans. Fuzzy Sys. Vol. 15 (2007), p.107

Google Scholar

[13] H. B. Mitchell: Inform. Sci. Vol. 170 (2005), p.409

Google Scholar

[14] J. Zeng and Z. Q. Liu: Journal of Uncertain Sys. Vol. 1 (2007), p.163

Google Scholar

[15] J. Zeng, L. Xie and Z. Q. Liu: Pattern Recognition Vol. 41 (2008), p.3636

Google Scholar

[16] M. H. Fazel Zarandi, M. Zarinbal and M. Izadi: Applied Soft Computing Vol. 11 (2011), p.285

DOI: 10.1016/j.asoc.2009.11.019

Google Scholar

[17] A. Celikyilmaz and I. B. Turksen: IEEE Trans. Syst., Man, Cybern., pt. B Vol. 38 (2008), p.1098

Google Scholar

[18] M. Ménard, V. Courboulay and P. A. Dardignac: Pattern Recognition Vol. 36 (2003), p.1325

Google Scholar

[19] W. C. Tjhi and L. H. Chen: IEEE Trans. Fuzzy Sys. Vol. 17 (2009), p.532

Google Scholar

[20] L. A. Zadeh: Fuzzy Sets and Systems Vol. 1 (1978), p.3

Google Scholar

[21] D. Dubois, L. Foulloy, G. Mauris and H. Prade: Reliab. Comput. Vol. 10 (2004), p.273

Google Scholar

[22] G. Mauris: IEEE Trans. Instr. Measu. Vol. 56 (2007), p.731

Google Scholar

[23] L. Xu, A. Krzyak and E. Oja: IEEE Trans. Neural Netw. Vol. 4 (1993), p.636

Google Scholar