Neural Network MIMO Model for Production of Isopropyl Myristate in a Semibatch Reactive Distillation Column

Article Preview

Abstract:

Batch reactive distillation is an integrated unit of batch reactor and distillation. It provides benefits of having higher conversion and yield by continuous removal of side product. The aim of this paper is to develop an artificial neural network (ANN) based model for production of isopropyl myristate in an industrial scaled semibatch reactive distillation. Two cases of the MIMO model were developed. Case 1 does not consider historical data as inputs while case 2 does. The trained ANN for both cases was validated with independent validation data and the best architecture was optimized. Case 1 resulted to 8 inputs, 14 hidden nodes and 2 outputs [8-14-2] ANN while Case 2 resulted to [12-13-2] ANN. The results show that both ANN models have ability to predict the unknown validation and testing data very well. However, the [8-14-2] ANN model produce higher accuracy than [12-13-2] ANN model with MSE of 0.00094 and 0.0013, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

403-408

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Arellano-Garcia, I. Carmona, and G. Wozny: Computers & Chemical Engineering Vol. 32 (2008), p.161.

Google Scholar

[2] E. A. Edreder, I. M. Mujtaba, and M. Emtir, Computer Aided Chemical Engineering, (2009)

Google Scholar

[3] S. Brüggemann, J. Oldenburg, P. Zhang, and W. Marquardt: Industrial & Engineering Chemistry Research Vol. 43 (2004), p.3672.

Google Scholar

[4] R. Schneider, C. Noeres, L. U. Kreul, and A. Górak: Computers & Chemical Engineering Vol. 25 (2001), p.169.

DOI: 10.1016/s0098-1354(00)00640-2

Google Scholar

[5] P. Kathel and A. K. Jana: ISA Transactions Vol. 49 (2010), p.130.

Google Scholar

[6] L. S. Balasubramhanya and F. J. Doyle Iii: Journal of Process Control Vol. 10 (2000), p.209.

Google Scholar

[7] A. Patra, D. M. Dave, and A. K. Jana: Industrial and Engineering Chemistry Research Vol. 50 (2011), p.1666.

Google Scholar

[8] M. E. Huerta-Garrido, V. Rico-Ramirez, and S. Hernandez-Castro: Industrial & Engineering Chemistry Research Vol. 43 (2004), p.4000.

DOI: 10.1021/ie030658w

Google Scholar

[9] S. B. Gadewar, M. F. Malone, and M. F. Doherty: Industrial and Engineering Chemistry Research Vol. 39 (2000), p.1565.

Google Scholar

[10] D. Osorio, R. Pérez-Correa, A. Belancic, and E. Agosin: Food Control Vol. 15 (2004), p.515.

Google Scholar

[11] K. Dadhe, V. Roßmann, K. Durmus, S. Engell, and B. Reusch, Springer Berlin / Heidelberg, (2001). Vol. 2206, p.576.

Google Scholar

[12] I. M. Mujtaba and M. A. Greaves: Neural network based modeling and optimization in batch reactive distillation 2006).

Google Scholar

[13] K. Jithin Prakash, D. S. Patle, and A. K. Jana: ISA Transactions Vol. (2011).

Google Scholar

[14] A. Bahar and C. Özgen: Engineering Applications of Artificial Intelligence Vol. 23 (2010), p.262.

Google Scholar

[15] K. Konakom, P. Kittisupakorn, A. Saengchan, and I. M. Mujtaba: Optimal Policy Tracking of a Batch Reactive Distillation by Neural Network-based Model Predictive Control (NNMPC) Strategy 2010).

DOI: 10.1016/j.jiec.2009.09.064

Google Scholar

[16] P. Li, H. A. Garcia, G. Wozny, and E. Reuter: Industrial & Engineering Chemistry Research Vol. 37 (1998), p.1341.

Google Scholar

[17] J. D. Seader and E. J. Henley, in: Separation Process Principles. John Wiley & Sons (Asia) Pte Ltd, (2006), in press.

Google Scholar

[18] M. Jimoh, H. A. Garcia, G. Wozny, H. Bock, and B. Gutsche: Lipid / Fett Vol. 101 (1999), p.50.

DOI: 10.1002/(sici)1521-4133(19992)101:2<50::aid-lipi50>3.0.co;2-8

Google Scholar

[19] N. A. A. Bashah, M. R. Othman, and N. Aziz: Simulation of Transesterification of Methyl Myristate and Isopropanol in Semibatch Reactive Distillation Column (Petaling Jaya, Selangor, Malaysia, 2012).

Google Scholar

[20] S. G. Luigi Fortuna, Alessandro Rizzo and Maria G. Xibilia in: Soft Sensors for Monitoring and Control of Industrial Processes. Springer-Verlag London Limited 2007, (2007), in press.

Google Scholar

[21] R. Hecht-Nielsen: Kolmogorov's mapping neural network existence theorem (San Diego, New York, 1987).

Google Scholar

[22] A. Robenson.Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, (2008).

DOI: 10.21315/jps2018.29.s1.12

Google Scholar

[23] P. Turner, G. Montague, and J. Morris: Control Theory and Applications, IEE Proceedings - Vol. 143 (1996), p.44.

Google Scholar