[1]
O. M. Bucci and G. Franceschetti, On the degrees of freedom of scattered fields. IEEE Trans. Antennas Propag, vol. 37, (1989) pp.918-926.
DOI: 10.1109/8.29386
Google Scholar
[2]
A. Roger, Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,. IEEE Trans. Antennas Propagat., vol. AP-29, (1981) pp.232-238.
DOI: 10.1109/tap.1981.1142588
Google Scholar
[3]
C. C. Chiu and Y. W. Kiang, Microwave imaging of multiple conducting cylinders,. IEEE Trans. Antennas Propagat., vol. 40, (1992) pp.933-941.
DOI: 10.1109/8.163431
Google Scholar
[4]
C. C. Chiu and Y. W. Kiang, Inverse Scattering of a Buried Conducting Cylinder,. Inverse Problem, vol. 7, (1991) pp.187-202.
DOI: 10.1088/0266-5611/7/2/004
Google Scholar
[5]
M. L. Dennison and A. J. Devaney Inverse scattering in inhomogeneous background media: II. Multi-frequency case and SVD formulation,. Inverse Problems, Vol. 20, No. 4, (2004) p.1307–1324.
DOI: 10.1088/0266-5611/20/4/018
Google Scholar
[6]
K. Belkebir, R. Kleinmann, and C. Pichot, Microwave imaging-Location and shape reconstruction from multifrequency data,. IEEE Transactions on Microwave Theory and Techniques, Vol. 45, (1997) p.469–475.
DOI: 10.1109/22.566625
Google Scholar
[7]
O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies,. IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, (2000) p.1749–1756.
DOI: 10.1109/36.851974
Google Scholar
[8]
A. Baussard, Iversion of multi-frequency experimental data using an adaptive multiscale approach, Inverse Problems, Vol. 21, (2005) pp. S15–S31.
DOI: 10.1088/0266-5611/21/6/s03
Google Scholar
[9]
M. M. Nikolic, M. Ortner, A. Nehorai, and A. e R. Djordjevic . An Approach to Estimating Building Layouts Using Radar and Jump-Diffusion Algorithm,. IEEE Transactions on Antennas and Propagation, (2009) pp.768-776.
DOI: 10.1109/tap.2009.2013420
Google Scholar
[10]
D. E. Goldgreg, Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, (1989).
Google Scholar
[11]
C. C. Chiu and P. T. Liu, Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,. IEE Proc. Microw. Antennas Propag., vol. 143, (1996) pp.249-253.
DOI: 10.1049/ip-map:19960363
Google Scholar
[12]
F. Xiao and H. Yabe, Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm couple with deterministic method,. IEICE Trans. Electron., vol. E81-C, (1998).
Google Scholar
[13]
Z. Q. Meng, T. Takenaka and T. Tanaka, Image reconstruction of two-dimensional impenetrable objects using genetic algorithm,. Journal of Electromagnetic Waves and Applications, vol. 13, (1999) pp.95-118.
DOI: 10.1163/156939399x01654
Google Scholar
[14]
Z. Qian, Z. Ding and W. Hong, Application of genetic algorithm and boundary element method to electromagnetic imaging of two-dimensional conducting targets,. 5th International Symposium on ISAPE, (2000) pp.211-214.
DOI: 10.1109/isape.2000.894762
Google Scholar
[15]
C. L. Li, S.H. Chen, C. M. Yang, and C. C. Chiu, Image reconstruction for a patially immersed perfectly conducting cylinder using the steady state algorithm,. Radio Science, vol. 39, RS2016, (2004).
DOI: 10.1029/2002rs002742
Google Scholar