Strain-Induced Modulations of Electro-Optic and Nonlinear Optical Properties of ZnO: A First-Principles Study

Article Preview

Abstract:

Strain-dependent electro-optic constant r33 and nonlinear optical coefficient d33 of ZnO are investigated systematically using density-functional theory based linear-response perturbation method. Miscellaneous properties, such as dielectric constants, elastic constants, piezoelectric coefficients, nonlinear optical coefficients, and electro-optic constants of other II-VI compound semiconductors (both Wurtzite and Zinc-blende structures) are also calculated for comparison with the results of unstrained ZnO. Extensive first-principles calculations show that both r33 and d33 of ZnO decrease almost linearly with increasing strains, which indicates that appropriate compression along the [0001] direction of ZnO could enhance its electro-optic and nonlinear optical properties, while stretching may weaken the corresponding properties. Among the involved Wurtzite structures, ZnO has the highest elastic constant, piezoelectric coefficient and electro-optic constant, showing practical importance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1803-1808

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. T. Welford: Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptik Constants, and �onlinear Dielectric Susceptibilities of Crystals, Landolt-Börnstein, New Series, Group III, Vol. 11, edited by K. H. Hellwege and A. M. Hellwege (Springer, Berlin, 1979).

DOI: 10.1002/crat.2170191028

Google Scholar

[2] Z. L. Wang, Nanostructures of zinc oxide, Materials Today, vol 7, 2004, pp.26-33.

Google Scholar

[3] Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol 312, 2006, pp.242-246.

DOI: 10.1126/science.1124005

Google Scholar

[4] C. Li, W. Guo, Y. Kong and H. Gao, First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures, Phys. Rev. B, vol 76, 2007, p.035322.

DOI: 10.1103/physrevb.82.159901

Google Scholar

[5] C. Sui, N. Chen, X. Xu, G. Wei, P. Cai and H. Zhou, High-temperature-dependent optical properties of ZnO film on sapphire substrate, Thin Solid Films, vol 516, 2008, pp.1137-1141.

DOI: 10.1016/j.tsf.2007.05.065

Google Scholar

[6] R. C. Miller, Optical second harmonic generation in piezoelectric crystals, Appl. Phys. Lett., vol 5, 1964, pp.17-19.

Google Scholar

[7] T. Nagata, T. Shimura, A. Ashida, N. Fujimura and T. Ito, Electro-optic property of ZnO: X (X=Li, Mg) thin films, Journal of Crystal Growth, vol 237-239, 2002, pp.533-537.

DOI: 10.1016/s0022-0248(01)01957-1

Google Scholar

[8] D. Tekleab, D. L. Carroll, G. G. Samsonidze and B. I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B, vol 64, 2001, p.035419.

DOI: 10.1103/physrevb.64.035419

Google Scholar

[9] X. -Q. Liu, X. -L. Wang, M. Ogura, T. Guillet, V. Voliotis and R. Grousson, Modification of optical properties by strain-induced piezoelectric effects in ultrahigh-quality V-groove AlGaAs/GaAs single quantum wire, Appl. Phys. Lett., vol 80, 2002, p.1894.

DOI: 10.1063/1.1459761

Google Scholar

[10] S. K. Gupta, S. Kapoor, J. Kumar and P. K. Sen, Strain-induced effects on optical properties of magnetized Stranski-Krastanov quantum dots, Nanotech., vol 18, 2007, p.325402.

DOI: 10.1088/0957-4484/18/32/325402

Google Scholar

[11] R. Ghosh, D. Basak and S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films, J. Appl. Phys., vol 96, 2004, pp.2689-2692.

DOI: 10.1063/1.1769598

Google Scholar

[12] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (http: /www. abinit. org).

Google Scholar

[13] http: /opium. sourceforge. net/index. html.

Google Scholar

[14] C. Li, W. Guo, Y. Kong and H. Gao, First-principles study on ZnO nanoclusters with hexagonal prism structures, Appl. Phys. Lett., vol 90, 2007, p.223102.

DOI: 10.1063/1.2743934

Google Scholar

[15] C. Li, W. Guo, Y. Kong and H. Gao, Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations, Appl. Phys. Lett., vol 90, 2007, p.033108.

DOI: 10.1063/1.2430686

Google Scholar

[16] Tutorials from ABINIT website: http: /www. abinit. org/documentation/helpfiles/for-v6. 0/tutorial /lesson_rf1. html.

Google Scholar

[17] J. T. Seo, Q. Yang, S. Creekmore, J. Mangana, J. Anderson, C. Pompey, D. Temple, X. Peng, J. L. Qu, W. Yu, A. Wang, S. Jung, H. Ruh, A. Mott and M. Namkung, Nonlinear optical spectroscopy of cadmium chalcogenide nanocrystals, Advanced Optical Processing of Materials, vol 780, 2003, pp.87-92.

DOI: 10.1557/proc-780-y3.1

Google Scholar

[18] S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian and M. Furuki, Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch, Appl. Phys. Lett., vol 87, 2005, p.251110.

DOI: 10.1063/1.2151256

Google Scholar