Three-Dimensional Sonic Band Gaps Tunned by Material Parameters

Article Preview

Abstract:

In this paper, band gaps tunned by material parameters in three-dimensional fluid-fluid sonic crystals are studied. From the basic wave equation, it is found that the material parameters directly determining the three-dimensional sonic band gaps are the mass density ratio and bulk modulus ratio. The calculation of the sonic band gaps is completed by the plane-wave expansion method. The effects of these parameters on sonic band gaps are discussed in details for the simple-cubic (sc), face-centered cubic (fcc) and body-centered cubic (bcc) lattices. The results show that the first potential sonic band gap easily appears at both small mass density ratio and bulk modulus ratio, and becomes wider with both of these two parameters decreasing. The bulk modulus ratio plays a more important role than the mass density ratio in tuning the sonic band gaps. The present analysis can be applied to artificially design band gaps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1797-1802

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Kushwaha, P. Halevi, L. Dobrzynsi, and B. Diafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

Google Scholar

[2] E. N. Economou, M. M. Sigalas, Phys. Rev. B 48, 13434 (1993).

Google Scholar

[3] M. S. Kushwaha, P. Halevi, G. Martinez, Phys. Rev. Lett. 49, 2313 (1994).

Google Scholar

[4] M. S. Kushwaha, P. Halevi, Appl. Phys. Lett. 64, 1085 (1994).

Google Scholar

[5] J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynsi, M. S. Kushwaha, and P. Halevi, J. Phys.: Condens. Matter 6, 8759 (1994).

Google Scholar

[6] R. Martinez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, and J. Llinares, Nature 378, 241 (1995).

Google Scholar

[7] M. M. Sigalas, J. Acoust. Soc. Am. 101, 1256 (1997).

Google Scholar

[8] M. S. Kushwaha, B. Djafari-Rouhani, J. Appl. Phys. 84, 4677 (1998).

Google Scholar

[9] M. S. Kushwaha, P. Halevi, Appl. Phys. Lett. 69, 31 (1996).

Google Scholar

[10] D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J. V. Sanchez-Perez, F. Meseguer, and J. Llinares, Phys. Rev. E 60 6316 (1999).

Google Scholar

[11] M. S. Kushwaha, B. Djafari-Rouhani, J. Appl. Phys. 80, 3191 (1996).

Google Scholar

[12] M. S. Kushwaha, P. Halevi, J. Acoust. Soc. Am. 101, 619 (1997).

Google Scholar

[13] C. Goffaux, J. P. Vigneron, Phys. Rev. B 64, 075118 (2001).

Google Scholar

[14] F. G. Wu, Z. Y. Liu, and Y. Y. Liu, Phys. Rev. E 66, 046628 (2002).

Google Scholar

[15] R Min, F G Wu, L H Zhong, H. L. Zhong, S. Zhong and Y. Y. Liu, J. Phy. D 39, 2272 (2006).

Google Scholar

[16] X. Z. Zhou, Y. S. Wang, C. Zhang, J. Appl. Phys. 106, 014903 (2009).

Google Scholar