[1]
Lokenath Debnath, Recent applications of fractional calculus to science and engineering, IJMMS 2003: 54, 3413-3442.
Google Scholar
[2]
Caputo M, Mainardi F. Linear models of dissipation in an elastic solids. Rivista del Nuovo Cimento1 (1971), Nr. 2, S. 161-198.
DOI: 10.1007/bf02820620
Google Scholar
[3]
Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 27 (1983), Nr. 3, S. 201-210.
DOI: 10.1122/1.549724
Google Scholar
[4]
Koeller R C. Application of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics 51 (1984), S. 299-307.
DOI: 10.1115/1.3167616
Google Scholar
[5]
Stanway R, Sproston J L, Stevens N G. Non-linear modeling of an electrorheological vibration damper[J], Electrostatics, 1987, 20.
DOI: 10.1016/0304-3886(87)90056-8
Google Scholar
[6]
ZHOU Qiang, QU Weilian, Two mechanic models for magnetorheological damper and corresponding test verification[J], Earthquake Engineering and Engineering Vibration, 2002, 22(4).
Google Scholar
[7]
Gamoto D R, Filisko F E, Dynamic mechanical studies of electrorheological materials: moderate frequencies[J], Rheology, 1991, 35(3).
DOI: 10.1122/1.550221
Google Scholar
[8]
Andre Schmidt, Lothar Gaul, Application of fractional calculus to viscoelastically damped structures in finite element method, Institute of Mechanik, University of Stuttgart.
Google Scholar
[9]
Miller K S, Ross B A. Introduction To The Fractional Calculus And Fractional Differential Equations [M]. Wiley, (1993).
Google Scholar
[10]
Podlubny I. Fractional-Order Systems and Controllers [J]. IEEE transactions on automatic control, 1999, 44(1): 208-214.
DOI: 10.1109/9.739144
Google Scholar
[11]
Podlubny I. Fractional Differential Equations. Academic Press, San Diego and London, (1999).
Google Scholar
[12]
ZHAO Chunna, XUE Dingyu. A Solution to Fractional Order Linear Syetems. Journal of Northeastern University (Natural Science), Vol. 28, No. 1, Jan. (2007).
Google Scholar