[1]
D. Stewart, A platform with six degrees of freedom, in: Proceedings of the IMechE, vol. 180, Pt. 1, No. 15, 1965–1966, p.371–385.
Google Scholar
[2]
Dasgupta B., and Mruthyunjaya T. S., (2000), The Stewart Platform Manipulator: a Review, Mech. Mach. Theory, 35(1), p.15~40.
Google Scholar
[3]
Merlet, J. -P., 2000, Parallel Robots, Kluwer Academic Publishers, Netherlands.
Google Scholar
[4]
J. E. McInroy and J. C. Hamann, Design and control of flexure jointed hexapods, IEEE Trans. Robot. Automat., vol. 16, p.372–381, Aug. (2000).
DOI: 10.1109/70.864229
Google Scholar
[5]
Y. Chen and J. E. McInroy, Decoupled Control of Flexure-Jointed Hexapods using Estimated Joint-Space Mass-Inertia Matrix, IEEE Transactions on Control Systems Technology, 12 (3), 2004, pp.413-421.
DOI: 10.1109/tcst.2004.824339
Google Scholar
[6]
Plummer, A. R., Modal Control of an Electrohydrostatic Flight Simulator Motion System, ASME 2009 Dynamic Systems and Control Conference, Volume 2, October 12–14, 2009, Hollywood, California, USA.
DOI: 10.1115/dscc2009-2608
Google Scholar
[7]
A.S. Velestos, C.E. Ventura, Modal analysis of non-classically damped linear systems, Earthquake Engineering and Structural Dynamics 14 (1986) p.217–243.
DOI: 10.1002/eqe.4290140205
Google Scholar
[8]
K. Harib and K. Srinivasan, Kinematic and dynamic analysis of Stewart platform-based machine tool structures Robotica, 21(5)(2003), pp.541-554.
DOI: 10.1017/s0263574703005046
Google Scholar
[9]
Reza Oftadeh, Mohammad M. Aref and Hamid D. Taghirad, Explicit Dynamics Formulation of Stewart–Gough Platform: A Newton–Euler Approach, The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan.
DOI: 10.1109/iros.2010.5653157
Google Scholar
[10]
H. Abdellatif, and B. Heimann, Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism, Mech. Mach. Theory, vo1. 44, pp.192-207, (2009).
DOI: 10.1016/j.mechmachtheory.2008.02.003
Google Scholar
[11]
G. Lebret, K. Liu, and F.L. Lewis, Dynamic analysis and control of a Stewart platform manipulator, J. Robot. Syst., vol. 10, n. 5, pp.629-655, (1993).
DOI: 10.1002/rob.4620100506
Google Scholar
[12]
S.H. Koekebakker. Model based control of a flight simulator motion system, PhD thesis, Delft University of Technology, (2001).
Google Scholar
[13]
K. Liu, M.R. Kujath, W. Zheng, Evaluation of damping non-proportionality using identified modal information, Mechanical Systems and Signal Processing 15 (1)(2001) p.227–242.
DOI: 10.1006/mssp.2000.1326
Google Scholar
[14]
H.Z. Jiang, J.F. He, Z.Z. Tong, Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator, Mechanism and Machine Theory, 45 (5) (2010), p.722–739.
DOI: 10.1016/j.mechmachtheory.2009.12.003
Google Scholar
[15]
Jingfeng He et al, Study on Dynamic Isotropy of a class of Symmetric Spatial Parallel Mechanisms with Actuation Redundancy, Journal of Vibration and Control (in publish).
Google Scholar
[16]
Zhizhong Tong et al, Optimal design of a class of generalized symmetric Gough–Stewart parallel manipulators with dynamic isotropy and singularity-free workspace, Robotica, 30(2)(2012), pp.305-314.
DOI: 10.1017/s0263574711000531
Google Scholar