Influence of Repeated Quenching-Tempering on Fisheye Cracks around Tin and Al2O3 Inclusions in SAE 52100 Steel

Article Preview

Abstract:

Martensitic high-carbon high-strength SAE 52100 bearing steel has been widely used as the main alloys for rolling contact applications, and also at the components under bending and tension-compression. In order to enhance the material’s strength, refining the prior austenite grain size through repeated heating has been investigated. In this work, the microstructure of repeatedly quenched-tempered Ti, N-rich SAE 52100 steel was investigated. The material was melted by an electric furnace and formed by continuous casting and forging, and the crack origin on the fracture surface was investigated. It was found that repeated furnace quenching and tempering effectively refined the martenstic structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1298-1303

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. D. Syniuta, C. J. Corrowa, Wear, 15, 3 (1970) 171-186.

Google Scholar

[2] Y. Murakami, Effects of Small Defects and Nonmetallic Inclusions, (Elsever Science Ltd., UK, 2002).

Google Scholar

[3] T. Nasito, H. Ueda, M. Kikuchi, Metallurgical and Materials Trans A, 15, 7 (1984) 1431-1436.

Google Scholar

[4] Y. Murakami, S. Kodama, S. Konuma, International Journal of Fatigue, 11, 5 (1989) 291-298.

Google Scholar

[5] Y. Murakami, H. Usuki, International Journal of Fatigue, 11, 5 (1989) 299-307.

Google Scholar

[6] G. Qian, Y. Hong, C. Zhou, Engineering Failure Analysis 17 (2010) 1517-1525.

Google Scholar

[7] C. Bathias, Materials science and technology, 28, 1 (2012) 27-33.

Google Scholar

[8] H. Koike, E. C. Santos, K. Kida, T. Honda, J. Rozwadowska, Advanced Material Research, 217-218 (2011) 1266-1271.

DOI: 10.4028/www.scientific.net/amr.217-218.1266

Google Scholar

[9] E. C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri, K. Hashimoto, Advanced Material Research, 217-218 (2011) 982-987.

DOI: 10.4028/www.scientific.net/amr.217-218.982

Google Scholar

[10] K. Mizobe, E. C. Santos, T. Honda, H. Koike, K. Kida, T. Shibukawa, Advanced Material Research, 457-458 (2012) 1025-1031.

DOI: 10.4028/www.scientific.net/amr.457-458.1025

Google Scholar

[11] J. S. Dubey, S. L. Wadekar, J. K. Chakravartty, Journal of Nuclear Materials, 254 (1998) 271-274.

Google Scholar

[12] R. A. Grange, Metallurgical and Materials Trans. A, 2 (1971) 65-78.

Google Scholar

[13] T. Hijikata, T. Yamazaki, K. Fujita, U.S. Patent 4, 222, 799. (1980).

Google Scholar

[14] E. C. Santos, K. Kida, J. Rozwadowska, T. Honda, K. Mizobe, T. Shibukawa, Advanced Material Reserch, 566 (2012) 288-292.

DOI: 10.4028/www.scientific.net/amr.566.288

Google Scholar

[15] R. A. Grange, E. R. Shackelford, U.S. Patent 3, 178, 324. (1965).

Google Scholar

[16] S. W. Mahajan, Metallograohy, 6 (1973) 337-345.

Google Scholar

[17] M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Metallurgical and Materials Trans. A, 13, 8 (1982) 1379-1388.

DOI: 10.1007/bf02642875

Google Scholar

[18] S. Bozo, Journal of Materials Processing Technology, 155, 156 (2004) 1704-1707.

Google Scholar

[19] T. Fujimatsu, M. Nishikawa, K. Hashimoto, A. Yamamoto, Materials Science Forum, 561-565 (2007) 2345-2348.

DOI: 10.4028/www.scientific.net/msf.561-565.2345

Google Scholar

[20] C. Ooki, K. Maeda, H. Nakashima, NTN Technical review, 71 (2004) 2-7.

Google Scholar

[21] K. Mizobe, T. Honda, H. Koike, E. C. Santos, K. Kida, T. Shibukawa, Advanced Material Research, 566 (2012) 150-156.

Google Scholar