[1]
S. Cerbelli, A. Giusti, A. Soldati, ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence, Int. J. Multiphase Flow. 27, 1861-1879 (2001).
DOI: 10.1016/s0301-9322(01)00036-2
Google Scholar
[2]
E.E. Musschenga, P.J. Hamersma, J.M.H. Fortuin, Momentum, heat and mass transfer in turbulent pipe flow: the extended random surface renewal model, Chem. Eng. Sci. 47, 343-362 (1992).
DOI: 10.1016/0009-2509(92)85116-s
Google Scholar
[3]
B.Y.H. Liu, J.K. Agarwal, Experimental observation of aerosol deposition in turbulent flow, J. Aerosol Sci. 5, 145-155 (1974).
DOI: 10.1016/0021-8502(74)90046-9
Google Scholar
[4]
R.L. Meek, A.D. Baer, The periodic viscous sublayer in turbulent flow, AIChE J. 16, 841-848 (1970).
DOI: 10.1002/aic.690160525
Google Scholar
[5]
C.N. Davies, Deposition of aerosol from turbulent flow through pipes, Proc. Roy. Soc. A289, 235-246. (1966).
Google Scholar
[6]
B.Y.H. Liu, T.A. Illori, Inertial deposition of aerosol particles in turbulent pipe flow, ASME symposium on Flow Studies in Air and Water Pollution, Atlanta, Georgia, 103-113 (1973).
Google Scholar
[7]
J.W. Brooke, T.J. Hanratty, J.B. McLaughlin, Free-flight mixing and deposition of aerosols, Physics of Fluids. 6, 3404-3415 (1994).
DOI: 10.1063/1.868398
Google Scholar
[8]
S.T. Johansen, The deposition of particles of vertical walls, Int. J. Multiphase Flow. 17, 355-376 (1991).
DOI: 10.1016/0301-9322(91)90005-n
Google Scholar
[9]
J.O. Hinze, Turbulence. McGraw-Hill Book Company, New York (1975).
Google Scholar
[10]
G.A. KAllio, M.W. Reeks, A numerical simulation of particle deposition in turbulent boundary layers, Int. J. Multiphase Flow. 15, 433-446 (1989).
DOI: 10.1016/0301-9322(89)90012-8
Google Scholar
[11]
R. Nijsing, Predictions of momentum, heat andmass transfer in turbulent channel flow with aid of boundary layer growth-breakdown model, Warmeund Stoffubertragung, 265-286 (1969).
DOI: 10.1007/bf01089051
Google Scholar
[12]
W.C. Hinds, Aerosol technology – properties, behavior, and measurement of airborne particles, John Wiley & Sons. Inc. 2 (1999).
Google Scholar
[13]
V.M. Alipchenkov, Statistical models for predicting particle dispersion and preferential concentration in turbulent flows, International Journal of Heat and Fluid Flow. . 26, 416-430(2005).
DOI: 10.1016/j.ijheatfluidflow.2004.10.001
Google Scholar
[14]
J.M.H. Fortuin, E.E. Musschenga, P.J. Hamersma, Transfer processes in turbulent pipe flow described by the ERSR model, AIChE J. 38, 343-362 (1992).
DOI: 10.1002/aic.690380304
Google Scholar
[15]
A. Guha, A unified Eulerian theory of turbulent deposition to smooth and rough surfaces, J. Aerosol Sci. 28, 8 , 1517-1537 (1997).
DOI: 10.1016/s0021-8502(97)00028-1
Google Scholar
[16]
S.A. Slater, A.D. Leeming, J.B. Young, Particle deposition from two-dimensional turbulent gas flow, Int. J. Multiphase Flow. 29, 721-750 (2003).
DOI: 10.1016/s0301-9322(03)00037-5
Google Scholar
[17]
S.K. Beal, Deposition of particles in turbulent flow on channel or pipe walls, Nucl. Sci. Eng. 40, 1-11 (1970).
Google Scholar
[18]
M. Shin, D.S. Kim, J.W. Lee, Deposition of inertia-dominated particles inside a turbulent boundary layer, Int. J. Multiphase Flow. 26, 892-926 (2003).
DOI: 10.1016/s0301-9322(03)00063-6
Google Scholar
[19]
S.K. Friedlander, H.F. Johnstone, Deposition of suspended particles from turbulent gas stream, Ind. Eng. Chem. 49, 1150-1156 (1957).
DOI: 10.1021/ie50571a039
Google Scholar
[20]
W.V. Pinczewski, S.A. Sideman, Model for mass (heat) transfer in turbulent flow, Moderate and high Schmidt (Prandtl) numbers, Chem. Engng Sci. 29, 1969-1976 (1974).
DOI: 10.1016/0009-2509(74)85016-5
Google Scholar