Mobility Deposition Effect of Aerosol Particles in the Boundary Layer

Article Preview

Abstract:

The particle concentration and convection velocity profile has been obtained by the adaptation of the random surface renewal model to the particle continuity and momentum equations of the nonisothermal turbulence boundary-layer flows In general, the investigations of particle deposition mainly include incompressible fluid laden by spherical and dilute particles in the fully developed turbulence boundary layer flows. This means that the fluid motion is unaffected by the presence of the particles and that the collisions between particles can be neglected. the relative quiescent viscous sublayer, resulting in the increase in thermophoretic deposition with increased Prandtl number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

924-927

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Cerbelli, A. Giusti, A. Soldati, ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence, Int. J. Multiphase Flow. 27, 1861-1879 (2001).

DOI: 10.1016/s0301-9322(01)00036-2

Google Scholar

[2] E.E. Musschenga, P.J. Hamersma, J.M.H. Fortuin, Momentum, heat and mass transfer in turbulent pipe flow: the extended random surface renewal model, Chem. Eng. Sci. 47, 343-362 (1992).

DOI: 10.1016/0009-2509(92)85116-s

Google Scholar

[3] B.Y.H. Liu, J.K. Agarwal, Experimental observation of aerosol deposition in turbulent flow, J. Aerosol Sci. 5, 145-155 (1974).

DOI: 10.1016/0021-8502(74)90046-9

Google Scholar

[4] R.L. Meek, A.D. Baer, The periodic viscous sublayer in turbulent flow, AIChE J. 16, 841-848 (1970).

DOI: 10.1002/aic.690160525

Google Scholar

[5] C.N. Davies, Deposition of aerosol from turbulent flow through pipes, Proc. Roy. Soc. A289, 235-246. (1966).

Google Scholar

[6] B.Y.H. Liu, T.A. Illori, Inertial deposition of aerosol particles in turbulent pipe flow, ASME symposium on Flow Studies in Air and Water Pollution, Atlanta, Georgia, 103-113 (1973).

Google Scholar

[7] J.W. Brooke, T.J. Hanratty, J.B. McLaughlin, Free-flight mixing and deposition of aerosols, Physics of Fluids. 6, 3404-3415 (1994).

DOI: 10.1063/1.868398

Google Scholar

[8] S.T. Johansen, The deposition of particles of vertical walls, Int. J. Multiphase Flow. 17, 355-376 (1991).

DOI: 10.1016/0301-9322(91)90005-n

Google Scholar

[9] J.O. Hinze, Turbulence. McGraw-Hill Book Company, New York (1975).

Google Scholar

[10] G.A. KAllio, M.W. Reeks, A numerical simulation of particle deposition in turbulent boundary layers, Int. J. Multiphase Flow. 15, 433-446 (1989).

DOI: 10.1016/0301-9322(89)90012-8

Google Scholar

[11] R. Nijsing, Predictions of momentum, heat andmass transfer in turbulent channel flow with aid of boundary layer growth-breakdown model, Warmeund Stoffubertragung, 265-286 (1969).

DOI: 10.1007/bf01089051

Google Scholar

[12] W.C. Hinds, Aerosol technology – properties, behavior, and measurement of airborne particles, John Wiley & Sons. Inc. 2 (1999).

Google Scholar

[13] V.M. Alipchenkov, Statistical models for predicting particle dispersion and preferential concentration in turbulent flows, International Journal of Heat and Fluid Flow. . 26, 416-430(2005).

DOI: 10.1016/j.ijheatfluidflow.2004.10.001

Google Scholar

[14] J.M.H. Fortuin, E.E. Musschenga, P.J. Hamersma, Transfer processes in turbulent pipe flow described by the ERSR model, AIChE J. 38, 343-362 (1992).

DOI: 10.1002/aic.690380304

Google Scholar

[15] A. Guha, A unified Eulerian theory of turbulent deposition to smooth and rough surfaces, J. Aerosol Sci. 28, 8 , 1517-1537 (1997).

DOI: 10.1016/s0021-8502(97)00028-1

Google Scholar

[16] S.A. Slater, A.D. Leeming, J.B. Young, Particle deposition from two-dimensional turbulent gas flow, Int. J. Multiphase Flow. 29, 721-750 (2003).

DOI: 10.1016/s0301-9322(03)00037-5

Google Scholar

[17] S.K. Beal, Deposition of particles in turbulent flow on channel or pipe walls, Nucl. Sci. Eng. 40, 1-11 (1970).

Google Scholar

[18] M. Shin, D.S. Kim, J.W. Lee, Deposition of inertia-dominated particles inside a turbulent boundary layer, Int. J. Multiphase Flow. 26, 892-926 (2003).

DOI: 10.1016/s0301-9322(03)00063-6

Google Scholar

[19] S.K. Friedlander, H.F. Johnstone, Deposition of suspended particles from turbulent gas stream, Ind. Eng. Chem. 49, 1150-1156 (1957).

DOI: 10.1021/ie50571a039

Google Scholar

[20] W.V. Pinczewski, S.A. Sideman, Model for mass (heat) transfer in turbulent flow, Moderate and high Schmidt (Prandtl) numbers, Chem. Engng Sci. 29, 1969-1976 (1974).

DOI: 10.1016/0009-2509(74)85016-5

Google Scholar