[1]
P. Meissen, V. Leroy. Scavenging Additions of Boron in Low-C-low Al Steels. Steel Res. 60 (1989) 320-328.
DOI: 10.1002/srin.198901660
Google Scholar
[2]
J.Z. ZHAO, A.K. DE, and B.C. De COOMAN. Formation of the Cottrell Atmosphere during Strain Aging of Bake-Hardenable Steels. METALLURGICAL AND MATERIALS TRANSACTIONS A. 32A (2001) 417-423.
DOI: 10.1007/s11661-001-0273-9
Google Scholar
[3]
De.A.K., De. Cooman, B.C. Soenen, S. Vandeputte. Carbon distribution between matrix, grain boundaries and dislocations in ultra low carbon bake-hardenable steels. Iron and Steelmaker. 28(2001) 31-37.
DOI: 10.1016/j.actamat.2004.03.046
Google Scholar
[4]
A. H. COTTRELL, B. A. BILBY. Dislocation Theory of Yielding and Strain Ageing of Iron. Proc. Phys. Soc. A. 62A(1949) 49–62.
DOI: 10.1088/0370-1298/62/1/308
Google Scholar
[5]
C. -S. Lee and B. K. Zuidema, The effect of mill processing conditions on the mechanical behavior of bake-hardenable steel, Iron and Steel Society of AIME. (1994) 103-110.
Google Scholar
[6]
Yong Qilong, SECONDARY PHASES IN STEELS, Metallurgical Industry Press, Beijing, (2006).
Google Scholar
[7]
CHEN Jiping, KANG Yonglin, HAO Yingrnin, LIU Guangming, XIONG Aiming. Microstructure and Properties of Ti and Ti+Nb Ultra-Low-Carbon Bake Hardened Steels. Journal of Iron and Steel Research (INTERNATIONAL). 16(2009) 33-44.
DOI: 10.1016/s1006-706x(10)60024-6
Google Scholar
[8]
H.J. GRABKE. Surface and Grain Boundary Segregation on and in Iron. Steel research, 57(1986) 178-185.
DOI: 10.1002/srin.198600750
Google Scholar