The Material Point Method and its Potential Applications in Marine Science

Article Preview

Abstract:

In this paper, the material point method (MPM) is reviewed. Its theory and advantages over other numerical methods are briefly summarized, and current development status reviewed. Due to the unique features of the MPM, it can be a significant tool in marine science research. Potential applications in marine science are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2816-2821

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sulsky, D, Zhou, S.J., Schreyer, H.L., Application of a Particle-in-Cell Method to Solid Mechanics, Comput. Phys. Commun., 1995, 87: 236-252.

DOI: 10.1016/0010-4655(94)00170-7

Google Scholar

[2] Sulsky, D, Chen, Z., Schreyer, H. L., A Particle Method for History-Dependent Materials,. Comput. Methods Appl. Mech. Engrg., 1994, vol. 118, p.179–186.

Google Scholar

[3] Sulsky, D, Schreyer, H.K., Axisymnmetric Form of the Material Point Method with Applications to Upsetting and Taylor Impact Problems,. Comput. Methods. Appl. Mech. Engrg, 1996, vol. 139, p.409–429.

DOI: 10.1016/s0045-7825(96)01091-2

Google Scholar

[4] Brackbill, J.U., Kothe D.B. and Ruppel H.M., FLIP: A Low-Dissipation, Particle-in-Cell Method for Fluid Flow, Comput. Phys. Comm., 1988, 48: 25-38.

DOI: 10.1016/0010-4655(88)90020-3

Google Scholar

[5] The Center for the Simulation of Accidental Fires and Explosions, http: / www. csafe. utah. edu.

Google Scholar

[6] The unitah software repository, http: /www. uintah. utah. edu.

Google Scholar

[7] Sulsky, D, Kaul, A., Implicit Dynamics in the Material-Point Method, Computer Methods in Applied Mechanics and Engineering, 2004, vol. 193, issue 12-14, pp.1137-1170.

DOI: 10.1016/j.cma.2003.12.011

Google Scholar

[8] Z. Chen, L. Shen, Y. -W. Mai, and Y. -G. Shen, A bifurcation-based decohesion model for simulating the transition from localization to decohesion with the MPM., J. Appl. Math. Phys. 56: 908–930, (2005).

DOI: 10.1007/s00033-005-3011-0

Google Scholar

[9] W. Hu, Z. Chen, Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM., Int. J. Impact Eng., vol. 32, no. 12, pp.2066-2096, (2006).

DOI: 10.1016/j.ijimpeng.2005.05.004

Google Scholar

[10] J. Ma, Y. Liu, and Komanduri, R., Structured Mesh Refinement in Generalized Interpolation Material Point (GIMP) Method for Simulation of Dynamic Problems, CMES, vol. 12, no. 3, pp.213-227, (2006).

Google Scholar

[11] J. Ma, Y. Liu, H. Lu, and Komanduri, R., Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)., CMES, vol. 16, no. 1, pp.41-55, (2006).

Google Scholar

[12] D.Z. Zhang, Q Zou, VanderHeyden, W.B., Ma, X., Material point method applied to multiphase flows, Journal of Computational Physics, vol. 227, no. 6, pp.3159-3173, (2008).

DOI: 10.1016/j.jcp.2007.11.021

Google Scholar

[13] D.Z. Zhang, X. Ma, Giguere, P.T., Material point method enhanced by modified gradient of shape function., Journal of Computational Physics, vol. 230, no. 16, pp.6379-6398, (2011).

DOI: 10.1016/j.jcp.2011.04.032

Google Scholar

[14] 6th MPM Workshop University of New Mexico Albuquerque, NM 87131, http: /www. math. unm. edu/~sulsky/MPMWorkshop/Home. html.

Google Scholar

[15] 7th MPM Workshop, http: /csm. mech. utah. edu/content/7th-mpm-workshop.

Google Scholar

[16] John Nairn Research Software, http: /people. oregonstate. edu/~nairnj.

Google Scholar

[17] Professor John A. Nairn Home page, http: /www. cof. orst. edu/cof/wse/faculty/Nairn.

Google Scholar

[18] J.A. Nairn Publications, http: /www. cof. orst. edu/cof/wse/faculty/Nairn/Publ. htm.

Google Scholar

[19] York II, A. R., Sulsky, D., and Schreyer, H. L., Fluid-structure Interaction based on the Material Point Method, Int. J. Numer. Mech. Engng. 48, 2000, pp.901-924.

DOI: 10.1002/(sici)1097-0207(20000630)48:6<901::aid-nme910>3.0.co;2-t

Google Scholar

[20] Guilkey, J.E., Harman, T.B., Banerjee, B., An Eulerian-Lagrangian approach for simulating explosions of energetic devices, Computers & structures, 85 issue 11-14, 2007, pp.660-674.

DOI: 10.1016/j.compstruc.2007.01.031

Google Scholar

[21] P Hu, L Xue, K Qu, Ni, K., and Brenner, M., Unified Solver for Modeling and Simulation of Nonlinear Aeroelasticity and Fluid-Structure Interactions, AIAA-2009-6148 AIAA Atmospheric Flight Mechanics Conference, Chicago, Illinois, Aug. 10-13, (2009).

DOI: 10.2514/6.2009-6148

Google Scholar

[22] P Hu, L Xue, Mao, S., Kamakoti, R., Zhao, H., Dittakavi, N., and Ni, K., Material Point Method Applied to Fluid-Structure Interaction/Aeroelasticity Problems, AIAA-2010-1464 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 4-7, (2010).

DOI: 10.2514/6.2010-1464

Google Scholar

[23] P Hu, L Xue, Kamakoti, R., Zhao, H., Li, Q., and Brenner, M., Material Point Method with Least Squares Technique for Nonlinear Aeroelasticity and Fluid-Structure Interactions (FSI) in ASTE-P Toolset, AIAA-2010-8224 AIAA Modeling and Simulation Technologies Conference, Toronto, Ontario, Aug. 2-5, (2010).

DOI: 10.2514/6.2010-8224

Google Scholar

[24] Advanced Dynamics Inc. http: /www. advanceddynamics-usa. com/index. htm.

Google Scholar

[25] Advanced Dynamics, http: /www. adicn. com.

Google Scholar

[26] Material Point Method Simulation, http: /www. mpmsim. com.

Google Scholar

[27] Xiong zhang, http: /www. comdyn. cn/contacts. html.

Google Scholar

[28] Y Lu , Algorithm Design for MPM 3D Solid Model Discretization, Silicon Valley, 2011 (6).

Google Scholar