Phase Unwrapping Method Based on Windowed Fourier Transform

Article Preview

Abstract:

Phase unwrapping is one of the key technologies in electronic speckle pattern interferometry. A new phase unwrapping algorithm, based on windowed Fourier transform is proposed. The high noisy phase map is denoised by the window Fourier transform approach and then is uwrapped by the discrete cosine transform. The method is tested in this paper using a circumferentially fixed circular plate with a point load at the centre and compared with not denoised wrapped phase map and unwrapped phase map. The result shows the new proposed phase unwrapping method in denoising and improving image quality has obvious superiority.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-326

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Viotti M R, Kaufmann G H, Galizzi G E. Measurement of elastic moduli using spherical indentation and digital speckle pattern interferometry with automated data processing [J]. Optics and Lasers in Engineering, 2006, 44(6): 495-508.

DOI: 10.1016/j.optlaseng.2005.05.002

Google Scholar

[2] Dhanasekar B, Ramamoorthy B. Digital speckle interferometry for assessment of surface roughness [ J ]. Optics and Lasers in Engineering, 2008, 46(3): 272-280.

DOI: 10.1016/j.optlaseng.2007.09.003

Google Scholar

[3] Yang L X, Ettemeyer A. Strain mearement by three dimensional electronic speckle pattern interferometry potentials limitations and applications [J]. Optical Engineering, 2003, 42(5): 1257-1266.

DOI: 10.1117/1.1566781

Google Scholar

[4] Yang L X, Schuth M, Thomas D, et al. Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem [ J ]. Optics and Lasers in Engineering, 2009, 47(2) : 252-258.

DOI: 10.1016/j.optlaseng.2008.04.025

Google Scholar

[5] Esteban Andres Zarate, Eden Custodia G, Carlos G, et al. Defect detection in metals using electronic speckle pattern interferometry [ J ]. Solar Energy Materials & Solar Cells, 2005, 88(2): 217-225.

DOI: 10.1016/j.solmat.2004.03.009

Google Scholar

[6] Gutmann B, Weber H. Phase unwrapping with the branch-cut method: role of phase-field direction [J]. Applied Optics, 2000, 39(26) : 4802-4816.

DOI: 10.1364/ao.39.004802

Google Scholar

[7] Dhanasekar B, Ramamoorthy B. Digital speckle interferometry for assessment of surface roughness [J]. Optics and Lasers in Engineering, 2008, 46: 272–280.

DOI: 10.1016/j.optlaseng.2007.09.003

Google Scholar

[8] Matham M V, Sujatha N. Digital speckle pattern interferometry for deformation analysis of inner surfaces of cylindrical specimens [J]. Applied Optics, 2004, 43(12): 2400-2408.

DOI: 10.1364/ao.43.002400

Google Scholar

[9] Sun P. Evaluation of two-dimensional displacement components of symmetrical deformation by phase-shifting electronic speckle pattern interferometry [J]. Applied Optics, 2007, 46(15): 2859 - 2862.

DOI: 10.1364/ao.46.002859

Google Scholar

[10] Fielding E J, Blom R G, Goldstein M R. Rapid subsidence over oil fields measured by SAR interferometry [J]. Geophysical Research Letters, 1998, 25(17): 3215 - 3218.

DOI: 10.1029/98gl52260

Google Scholar

[11] Carnee C, Delacourt C. Three years of mining subsidence monitored by SAR interferometry, near gardanne france [J]. Journal of Applied Geophysics, 2000, 43(1): 43-54.

DOI: 10.1016/s0926-9851(99)00032-4

Google Scholar

[12] Zebker H A, Rosen P A, Hensleys. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [ J ]. Journal of Geophysical Research, 1997, 102(B4): 7547-7563.

DOI: 10.1029/96jb03804

Google Scholar

[13] Roger M G, Stephen W J, Ralph P T. Shape and slope measurement by source displacement in shearography [ J ]. Optics and Lasers in Engineering, 2004, 41(4): 621-634.

DOI: 10.1016/s0143-8166(02)00177-x

Google Scholar

[14] Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[ J ]. Optics and Lasers in Engineering, 2007, 45(2): 304-317.

DOI: 10.1016/j.optlaseng.2005.10.012

Google Scholar

[15] Qian K. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695-2702.

DOI: 10.1364/ao.43.002695

Google Scholar

[16] Kemao Q, Wang H, Gao W. Windowed Fourier transform for fringe pattern analysis: theoretical analyses [J]. Applied Optics, 2008, 47(29): 5408-5419.

DOI: 10.1364/ao.47.005408

Google Scholar

[17] Sharpe W N. Springer Handbook of Experimental Solid Mechanics [M]. New York: Springer Science + Business Media, 2008: 666 - 667.

Google Scholar

[18] Maas A, Somers P. Two-dimensional deconvolution applied to phase-stepping shearography [ J ]. Optics and Lasers in Engineering, 1997, 26(4-5): 351-360.

DOI: 10.1016/0143-8166(95)00138-7

Google Scholar