[1]
Viotti M R, Kaufmann G H, Galizzi G E. Measurement of elastic moduli using spherical indentation and digital speckle pattern interferometry with automated data processing [J]. Optics and Lasers in Engineering, 2006, 44(6): 495-508.
DOI: 10.1016/j.optlaseng.2005.05.002
Google Scholar
[2]
Dhanasekar B, Ramamoorthy B. Digital speckle interferometry for assessment of surface roughness [ J ]. Optics and Lasers in Engineering, 2008, 46(3): 272-280.
DOI: 10.1016/j.optlaseng.2007.09.003
Google Scholar
[3]
Yang L X, Ettemeyer A. Strain mearement by three dimensional electronic speckle pattern interferometry potentials limitations and applications [J]. Optical Engineering, 2003, 42(5): 1257-1266.
DOI: 10.1117/1.1566781
Google Scholar
[4]
Yang L X, Schuth M, Thomas D, et al. Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem [ J ]. Optics and Lasers in Engineering, 2009, 47(2) : 252-258.
DOI: 10.1016/j.optlaseng.2008.04.025
Google Scholar
[5]
Esteban Andres Zarate, Eden Custodia G, Carlos G, et al. Defect detection in metals using electronic speckle pattern interferometry [ J ]. Solar Energy Materials & Solar Cells, 2005, 88(2): 217-225.
DOI: 10.1016/j.solmat.2004.03.009
Google Scholar
[6]
Gutmann B, Weber H. Phase unwrapping with the branch-cut method: role of phase-field direction [J]. Applied Optics, 2000, 39(26) : 4802-4816.
DOI: 10.1364/ao.39.004802
Google Scholar
[7]
Dhanasekar B, Ramamoorthy B. Digital speckle interferometry for assessment of surface roughness [J]. Optics and Lasers in Engineering, 2008, 46: 272–280.
DOI: 10.1016/j.optlaseng.2007.09.003
Google Scholar
[8]
Matham M V, Sujatha N. Digital speckle pattern interferometry for deformation analysis of inner surfaces of cylindrical specimens [J]. Applied Optics, 2004, 43(12): 2400-2408.
DOI: 10.1364/ao.43.002400
Google Scholar
[9]
Sun P. Evaluation of two-dimensional displacement components of symmetrical deformation by phase-shifting electronic speckle pattern interferometry [J]. Applied Optics, 2007, 46(15): 2859 - 2862.
DOI: 10.1364/ao.46.002859
Google Scholar
[10]
Fielding E J, Blom R G, Goldstein M R. Rapid subsidence over oil fields measured by SAR interferometry [J]. Geophysical Research Letters, 1998, 25(17): 3215 - 3218.
DOI: 10.1029/98gl52260
Google Scholar
[11]
Carnee C, Delacourt C. Three years of mining subsidence monitored by SAR interferometry, near gardanne france [J]. Journal of Applied Geophysics, 2000, 43(1): 43-54.
DOI: 10.1016/s0926-9851(99)00032-4
Google Scholar
[12]
Zebker H A, Rosen P A, Hensleys. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [ J ]. Journal of Geophysical Research, 1997, 102(B4): 7547-7563.
DOI: 10.1029/96jb03804
Google Scholar
[13]
Roger M G, Stephen W J, Ralph P T. Shape and slope measurement by source displacement in shearography [ J ]. Optics and Lasers in Engineering, 2004, 41(4): 621-634.
DOI: 10.1016/s0143-8166(02)00177-x
Google Scholar
[14]
Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[ J ]. Optics and Lasers in Engineering, 2007, 45(2): 304-317.
DOI: 10.1016/j.optlaseng.2005.10.012
Google Scholar
[15]
Qian K. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695-2702.
DOI: 10.1364/ao.43.002695
Google Scholar
[16]
Kemao Q, Wang H, Gao W. Windowed Fourier transform for fringe pattern analysis: theoretical analyses [J]. Applied Optics, 2008, 47(29): 5408-5419.
DOI: 10.1364/ao.47.005408
Google Scholar
[17]
Sharpe W N. Springer Handbook of Experimental Solid Mechanics [M]. New York: Springer Science + Business Media, 2008: 666 - 667.
Google Scholar
[18]
Maas A, Somers P. Two-dimensional deconvolution applied to phase-stepping shearography [ J ]. Optics and Lasers in Engineering, 1997, 26(4-5): 351-360.
DOI: 10.1016/0143-8166(95)00138-7
Google Scholar